1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
3 years ago
15

What are electromagnetic waves that you can see?

Biology
1 answer:
Nataliya [291]3 years ago
7 0
<span><span>Radio waves: If our eyes could see radio waves, we could (in theory) watch TV programs just by staring at the sky! Well not really, but it's a nice idea. Typical size: 30cm–500m. Radio waves cover a huge band of frequencies, and their wavelengths vary from tens of centimeters for high-frequency waves to hundreds of meters (the length of an athletics track) for lower-frequency ones. That's simply because any electromagnetic wave longer than a microwave is called a radio wave.</span><span>Microwaves: Obviously used for cooking in microwave ovens, but also for transmitting information in radar equipment. Microwaves are like short-wavelength radio waves. Typical size: 15cm (the length of a pencil).</span><span>Infrared: Just beyond the reddest light we can see, with a slightly shorter frequency, there's a kind of invisible "hot light" called infrared. Although we can't see it, we can feel it warming our skin when it hits our face—it's what we think of as radiated heat. If, like rattlesnakes, we could see infrared radiation, it would be a bit like having night-vision lenses built into our heads. Typical size: 0.01mm (the length of a cell).</span><span>Visible light: The light we can actually see is just a tiny slice in the middle of the spectrum.</span><span>Ultraviolet: This is a kind of blue-ish light just beyond the highest-frequency violet light our eyes can detect. The Sun transmits powerful ultraviolet radiation that we can't see: that's why you can get sunburned even when you're swimming in the sea or on cloudy days—and why sunscreen is so important. Typical size: 500 nanometers (the width of a typical bacteria).</span><span>X rays: A very useful type of high-energy wave widely used in medicine and security. Find out more in our main article on X rays. Typical size: 0.1 nanometers (the width of an atom).</span><span>Gamma rays: These are the most energetic and dangerous form of electromagnetic waves. Gamma rays are a type of harmful radiation. Typical size: 0.000001 nanometers (the width of an atomic nucleus).</span></span>
You might be interested in
Sugar, phosphate and nitrogenous bases are components of which of the following?
Tpy6a [65]

In the 1950s, Francis Crick and James Watson worked together at the University of Cambridge, England, to determine the structure of DNA. Other scientists, such as Linus Pauling and Maurice Wilkins, were also actively exploring this field. Pauling had discovered the secondary structure of proteins using X-ray crystallography. X-ray crystallography is a method for investigating molecular structure by observing the patterns formed by X-rays shot through a crystal of the substance. The patterns give important information about the structure of the molecule of interest. In Wilkins’ lab, researcher Rosalind Franklin was using X-ray crystallography to understand the structure of DNA. Watson and Crick were able to piece together the puzzle of the DNA molecule using Franklin’s data (Figure 9.2). Watson and Crick also had key pieces of information available from other researchers such as Chargaff’s rules. Chargaff had shown that of the four kinds of monomers (nucleotides) present in a DNA molecule, two types were always present in equal amounts and the remaining two types were also always present in equal amounts. This meant they were always paired in some way. In 1962, James Watson, Francis Crick, and Maurice Wilkins were awarded the Nobel Prize in Medicine for their work in determining the structure of DNA.

Photo in part A shows James Watson, Francis Crick, and Maclyn McCarty. The x-ray diffraction pattern in part b is symmetrical, with dots in an x-shape.

Figure 9.2 Pioneering scientists (a) James Watson and Francis Crick are pictured here with American geneticist Maclyn McCarty. Scientist Rosalind Franklin discovered (b) the X-ray diffraction pattern of DNA, which helped to elucidate its double helix structure. (credit a: modification of work by Marjorie McCarty; b: modification of work by NIH)

Now let’s consider the structure of the two types of nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The building blocks of DNA are nucleotides, which are made up of three parts: a deoxyribose (5-carbon sugar), a phosphate group, and a nitrogenous base (Figure 9.3). There are four types of nitrogenous bases in DNA. Adenine (A) and guanine (G) are double-ringed purines, and cytosine (C) and thymine (T) are smaller, single-ringed pyrimidines. The nucleotide is named according to the nitrogenous base it contains.

(a) Each DNA nucleotide is made up of a sugar, a phosphate group, and a base.

Figure 9.3 (a) Each DNA nucleotide is made up of a sugar, a phosphate group, and a base.

(b) Cytosine and thymine are pyrimidines. Guanine and adenine are purines.

Figure 9.3 (b) Cytosine and thymine are pyrimidines. Guanine and adenine are purines.

The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.

Watson and Crick proposed that the DNA is made up of two strands that are twisted around each other to form a right-handed helix, called a double helix. Base-pairing takes place between a purine and pyrimidine: namely, A pairs with T, and G pairs with C. In other words, adenine and thymine are complementary base pairs, and cytosine and guanine are also complementary base pairs. This is the basis for Chargaff’s rule; because of their complementarity, there is as much adenine as thymine in a DNA molecule and as much guanine as cytosine. Adenine and thymine are connected by two hydrogen bonds, and cytosine and guanine are connected by three hydrogen bonds. The two strands are anti-parallel in nature; that is, one strand will have the 3′ carbon of the sugar in the “upward” position, whereas the other strand will have the 5′ carbon in the upward position. The diameter of the DNA double helix is uniform throughout because a purine (two rings) always pairs with a pyrimidine (one ring) and their combined lengths are always equal. (Figure 9.4).

5 0
3 years ago
Read 2 more answers
What is the action force and the reaction force when someone swims? <br> No link
Arada [10]

Answer:

The action and reaction forces are reciprocal (opposite) on an object. The swimmer pushes against the water (action force), the water pushes back on the swimmer (reaction force) and pushes her forward. The ball puts a force on the wall (action force), and the wall puts a force on the ball (reaction force) so the ball bounces off.

Explanation:

6 0
3 years ago
Read 2 more answers
Why do we call menstruation a "cycle"?
atroni [7]
Because it repeats the same process over and over again.
3 0
4 years ago
Read 2 more answers
A Ferrel so moved between
Arte-miy333 [17]

do you have a graph or an image you can attach

7 0
4 years ago
Assuming that each replication fork moves at a rate of 500 base pairs per second, how long would it take to replicate the
mixas84 [53]
Vffesefy y the nonschool credence
7 0
4 years ago
Read 2 more answers
Other questions:
  • When a central atom has an expanded octet, what geometric shape might the species exhibit?
    7·2 answers
  • Scientists found a layer of rock with several different fossils in it, as shown in the image. Based on the model, which of these
    8·2 answers
  • What would have a bigger impact on a grassland ecosystem,
    7·2 answers
  • What are two types of monkeys
    10·1 answer
  • Many organisms in an ecosystem compete with each other for resources. What might different species of trees in a forest ecosyste
    15·2 answers
  • 2 Points
    13·1 answer
  • This diagram is of an amniote egg. What are the correct labels for this diagram?
    5·1 answer
  • Ijbvgxsezxtfvgybhunjiuhygtfrdcetfhyuj
    9·1 answer
  • O que são elementos astronômicos visíveis?
    13·1 answer
  • Once potential energy has been converted into kinetic energy, one of two things can happen. The kinetic energy may be and made u
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!