1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
7

Please help

Mathematics
1 answer:
Ira Lisetskai [31]3 years ago
7 0

B should be your answer. 125-360= -235

You might be interested in
Marshall divides his money into four categories. He saves 1/3 of his money. He gives 1/6 of his money to a charity. He uses 1/14
Len [333]
1/3 + 3/7
save + fun + extra

(7/21 + 9/21) = 16/21 on save and fun
7 0
3 years ago
Read 2 more answers
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Which system of linear inequalities is shown in the graph?
victus00 [196]

Answer:

D)

y > x + 4

y ≥ -3x - 2

Step-by-step explanation:

Blue line's boundary is above the line and dotted (>) so the equation: y > x + 4

Red line's boundary is above the line and solid (≥) so the equation: y ≥ -3x - 2

Answer

D)

y > x + 4

y ≥ -3x - 2

7 0
3 years ago
Read 2 more answers
The table below shows the number of hours some business people in two states spend in meetings each week: State A 21 23 24 22 24
Lera25 [3.4K]
State A:
21,22,22,23,23,23,24,24,25

minimum = 21
Q1 = 22
Q2(median) = 23
Q3 = 24
maximum = 25
IQR = Q3 - Q1 = 24 - 22 = 2

state B:
20,20,21,22,23,23,24,46,50
minimum = 20
Q1 = (20 + 21)/2 = 20.5
Q2(median) = 23
Q3 = (24 + 46)/2 = 35
maximum = 50
IQR = 35 - 20.5 = 14.5

I do not believe they are symmetrical....I think state B is skewed to the right
6 0
3 years ago
Help with #22 please
Anastaziya [24]

Answer:

side c = 10.2

A = 52.6°

B = 37.4°

Step-by-step explanation:

c² = 8.1² + 6.2²

c² = 104.05

c = 10.20049018

Using cosine law:

8.1² = 10.2² + 6.2² - 2(10.2)(6.2)cos

cosA = 7687/11648

A = 52.57199409

A = 52.6°

B = 180 - 90 - 52.6 = 37.4°

8 0
3 years ago
Other questions:
  • 74/100 in simplest form
    5·2 answers
  • A toy box has a volume of 30 cubic feet. It is 5 feet wide And 2 feet long. What is the height of the toy box
    5·2 answers
  • What does this equal<br> 2 [30/5] =
    9·2 answers
  • Using the information given, select the statement that can deduce the line segments to be parallel. If there are none, then sele
    13·1 answer
  • Sq is an angle bisector m &lt;qst=2x and m &lt;qsr=3x-10 what is &lt;rst
    9·1 answer
  • Can somebody help me with this math question?
    15·1 answer
  • (For my little sis, again) Order the numbers from least to greatest-
    13·2 answers
  • Log7 5 + log7 x = log7 60
    10·1 answer
  • What is the value of the expression below when w = 5?<br> 2w2 – 2w + 3
    12·1 answer
  • A cone and a cylinder have congruent height and base bases. The volume of the cone is 18m squared. What's the volume of the cyli
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!