Explanation:
C one is the correct one according to me
Answer:
U₂ = 20 J
KE₂ = 40 J
v= 12.64 m/s
Explanation:
Given that
H= 12 m
m = 0.5 kg
h= 4 m
The potential energy at position 1
U₁ = m g H
U₁ = 0.5 x 10 x 12 ( take g= 10 m/s²)
U₁ = 60 J
The potential energy at position 2
U₂ = m g h
U ₂= 0.5 x 10 x 4 ( take g= 10 m/s²)
U₂ = 20 J
The kinetic energy at position 1
KE= 0
The kinetic energy at position 2
KE= 1/2 m V²
From energy conservation
U₁+KE₁=U₂+KE₂
By putting the values
60 - 20 = KE₂
KE₂ = 40 J
lets take final velocity is v m/s
KE₂= 1/2 m v²
By putting the values
40 = 1/2 x 0.5 x v²
160 = v²
v= 12.64 m/s
The Specific Heat Capacity of silver is 230 J/kgK, melting point is 961.8 C so the difference is 941.8K. Now we simply do q=230J/kgK*16.5kg*941.8K and that is 3 574 131 J
In a transverse wave:
- Oscillations are perpendicular to the direction of energy travelling
- Frequency is the amount of complete waves passing a certain point in one second (measured in hertz, Hz)
- Wavelength is the distance from any point on one wave to the same point on the following wave
- The amplitude is the maximum displacement of the particles from their average position (and be measured from the horizontal mid-point of the wave to either the peak or trough)
There isn't always a defined relationship between these features. However, frequency × wavelength = velocity of the wave.