Supposing that the spring is un stretched when θ = 0, and has a toughness of k = 60 N/m.It seems that the spring has a roller support on the left end. This would make the spring force direction always to the left
Sum moments about the pivot to zero.
10.0(9.81)[(2sinθ)/2] + 50 - 60(2sinθ)[2cosθ] = 0 98.1sinθ + 50 - (120)2sinθcosθ = 0 98.1sinθ + 50 - (120)sin(2θ) = 0
by iterative answer we discover that
θ ≈ 0.465 radians
θ ≈ 26.6º
Answer:
13.875 T
Explanation:
Parameters given:
Length of solenoid, L = 2.5 cm = 0.025 m
Radius of solenoid, r = 0.75 cm = 0.0075 m
Number of turns, N = 25 turns
Current, I = 1.85 A
Magnetic field, B, is given as:
B = (N*r*I) /L
B = (25 * 0.0075 * 1.85)/0.025
B = 13.875 T
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
That's what scientists and other technical people call the object's "<em>volume</em>".