Answer:
Explanation:
The volume of contaminated water
= cross sectional area x height of water level
3.14 x 9 x 9 x 7.5 ft³
= 1907.55 ft³
mass = density x volume
= 1907.55 x 63.5 lbs
m = 121129.425 lbs
This mass has to be raised to the height of 8 ft before evacuation .
There is a rise of centre of mass of
8 - 7.5/2 ft
h = 4.25 ft
Energy required
= mgh
= 121129.425 x 32 x 4.25
= 16473601.8 unit.
Answer:
(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).
(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .
Explanation:
m= 3kg
a= 2 i + 5 j = 5 .38 < 68.19 º
F= m * a
F= 3* ( 5.38 < 68.19º )
F= 16.4 N < 68.19º
Fx= F * cos(68.19º)
Fx= 5.99
Fy= F* sin(68.19º)
Fy= 14.98
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Okay, 90% of this is nonsense besides the numbers maybe.