Answer:
a) Fermi level = 600 electron-volts
b) 
Explanation:
Given data:
length of one-dimensional crystal = 10 um
Lattice spacing = 0.1 nm
A) Determine the Fermi level assuming one electron per atom
Total length = 10 <em>u</em>m
Interatomic separation of a = 0.1 nm
in this case the Atom has one electron therefore the number of electrons = 10^5 and the number of states Ns = gsN = 2 * 10^5 ( attached below is some part of the solution )
hence : Fermi level = 600 electron-volts
B) Determine the density of states as a function of electron energy
attached below is the detailed solution
Answer:

Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum
g is the acceleration of gravity
From this equation we can write

Taking the square of this equation, we get:

So we see that
is proportional to L and inversely proportional to g. So, we can write:

So the only correct option is

Answer:
false
Explanation:
Linear momentum is the product of an objects mass and velocity
p=m×v
Answer:
L = 5,955 m
Explanation:
For this exercise we must use the relation
R = ρ L / A
where R is the resistance that indicates that it is 1 Ω, the resistivity is taken from the tables ρ = 2.82 10⁻⁸ Ω m, L is the length of the wire and A is the cross section.
As it indicates to us in volume of aluminum to use we divide the two terms by the length
R / L = ρ L / (A L)
the volume of a body is its area times its length, therefore
R / L = ρ L / V
R = ρ L² / V
we clear the length of the wire
L = √ R V /ρ
we reduce the volume to SI units
v = 1 cm³ (1m / 10² cm)³ = 1 10⁻⁶ m
let's calculate
L = √ (1 1 10⁻⁶ / 2.82 10⁻⁸)
L = √ (0.3546 10²)
L = 5,955 m