Answer:
The value of leaking rate in the question is repeated. By searching on the web I could find the correct value wich is 0.002h^2 m^3 /min.
The depth of the water has to be equal to 7.07 m in order to have a stationary volume.
Explanation:
In order to have a stationary water level the flow of water that comes into the tank (0.1 m^3/min) must be equal to the flow of water that goes out of the tank (0.002*h^2 m^3/min), therefore:
0.002*h^2 = 0.1
h^2 = 0.1/0.002
h^2 = 50
h = sqrt(50) = 7.07 m
If a teacher had 48 red pens and the ratio of red to blue pens she owns is 6:1, she will have a total of 56 pens
Let the number of red pens be R and the number of blue pens be B.
R = 48
R / B = 6 / 1
48 / B = 6 / 1
B = 48 / 6
B = 8
Total number of pens = Number of red pens + Number of blue pens
Total number of pens = R + B
Total number of pens = 48 + 8
Total number of pens = 56 pens
Therefore, she has a total of 56 pens
To know more about ratio
brainly.com/question/361700
#SPJ9
Answer: Natural selection is taking place.
Explanation:
As you can see, the lighter colored mice are more visible than their surroundings, so the hawk picks them off one by one. the brown mice on the other hand are less visible, blending in with their surroundings, so they are successful, and pass on the genes that allow them to survive better.
- anonymous
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Answer:
a) 37.8 W
b) 2 Nm
Explanation:
180 g = 0.18 kg
We can also convert 180 revolution per minute to standard angular velocity unit knowing that each revolution is 2π and 1 minute equals to 60 seconds
180 rpm = 180*2π/60 = 18.85 rad/s
We can use the heat specific equation to find the rate of heat exchange of the steel drill and block:

Since the entire mechanical work is used up in producing heat, we can conclude that the rate of work is also 37.8 J/s, or 37.8 W
The torque T required to drill can be calculated using the work equation


