Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •
Inertia is the property of all matter by which it tends to remain
in constant, uniform motion unless acted on by external force.
Answer:
$175
Explanation:
Insurance premium is expressed as a rate $1000
($3.50 per $1000)
Therefore;
Annual premium= $50000x$3.50/$1000
= $175
Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s