My guess would be because the gravity from the Earth's core is constantly pulling the ball towards the ground. It's like the moon. Why doesn't the moon just float away in space? Because Earth's gravitational pull keeps it rotating around it. Therefore, the ball will always be pulled towards the core which keeps it from from rolling forever due to friction. But i may be wrong, even though this a quite a good answer, hope it is right!
The unit of electric current is the 'ampere'.
That's the current in the circuit when one coulomb of charge
flows past any fixed point every second.
Answer:
- Carbon moves from the atmosphere to plants. In the atmosphere, carbon is attached to oxygen in a gas called carbon dioxide (CO2). Through the process of photosynthesis, carbon dioxide is pulled from the air to produce food made from carbon for plant growth.
- Carbon moves from plants to animals. Through food chains, the carbon that is in plants moves to the animals that eat them. Animals that eat other animals get the carbon from their food too.
Carbon moves from plants and animals to soils. When plants and animals die, their bodies, wood and leaves decays bringing the carbon into the ground. Some is buried and will become fossil fuels in millions and millions of years.
Carbon moves from
- living things to the atmosphere. Each time you exhale, you are releasing carbon dioxide gas (CO2) into the atmosphere. Animals and plants need to get rid of carbon dioxide gas through a process called respiration.
Carbon moves from fossil fuels to the atmosphere when fuels are burned. When humans burn fossil fuels to power factories, power plants, cars and trucks, most of the carbon quickly enters the atmosphere as carbon dioxide gas. Each year, five and a half billion tons of carbon is released by burning fossil fuels. Of this massive amount, 3.3 billion tons stays in the atmosphere. Most of the remainder becomes dissolved in seawater.
Answer:
False
Explanation:
A compass can be used to determine relative direction but not absolute direction.
Complete question:
Find the pressure exerted by a waterbed with dimensions of 2 m x 2 m which is 30 cm thick. (hint: use 1000 kg/m³ as density of water)
Answer:
The pressure exerted by the waterbed is 2940 N/m²
Explanation:
Given;
Length of waterbed, L = 2 m
Width of waterbed, W = 2 m
Height of waterbed, H = 30 cm = 0.3 m
density of water, ρ = 1000 kg/m³
Hydrostatic pressure derivation:

The hydrostatic pressure exerted by the waterbed is directly proportional to the height of the waterbed. Thus, the hydrostatic pressure increases with increase in height of the waterbed.
Hydrostatic Pressure exerted by the waterbed:
P = ρgH
P = 1000 x 9.8 x 0.3
P = 2940 N/m²
Therefore, the pressure exerted by the waterbed is 2940 N/m²