1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
6

Two samples of water are mixed together.

Physics
1 answer:
Anon25 [30]3 years ago
7 0
<h3><u>Answer;</u></h3>

A.75°C

<h3><u>Explanation</u>;</h3>

Let the change in temp of cold water be  x degrees,

while that of  hot water be 100 - x degrees.

Heat exchange =  mcΔt

Ice

Δt = x

m = 0.50 kg

c = 4.18 kJ/kg*°C

Hot water

Δt = 100 - x

m = 1.5 kg

c = 4.18

But;

Heat lost = heat gained

0.50 * c * x = 1.5 * c * (100 - x)          

0.50 *x = 1.5*(100 - x)                          

0.5x = 150 - 1.5x                                  

0.5x + 1.5x = 150 - 1.5x + 1.5x            

2x = 150                                              

x = <u>75° C</u>

Hence; the equilbrium temperature will be 75° C

You might be interested in
Who was known for being a pilot and an astronaut that walked on the moon?.
Mkey [24]

Answer:

albert einsteinssssssssssssssssssssssssss

Explanation:

3 0
2 years ago
Read 2 more answers
The voltage across the terminals of a 9.0 v battery is 8.5 v when the battery is connected to a 60 ω load. part a what is the ba
snow_lady [41]
Refer to the diagram shown below.

i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω

Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5         (10

Also,
R₂*i = 9.5         (2)

Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A

From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)

Answer: 0.08 Ω

3 0
3 years ago
Read 2 more answers
The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the part
svetoff [14.1K]

Answer:

B. distance/potential

Explanation:

Quizlet

5 0
3 years ago
Problem 4: A uniform flat disk of radius R and mass 2M is pivoted at point P A point mass of 1/2 M is attached to the edge of th
brilliants [131]

From the case we know that:

  1. The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
  2. The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
  3. The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².

Please refer to the image below.

We know from the case, that:

m = 2M

r = R

m2 = 1/2M

distance between the center of mass to point P = p = R

Distance of the point mass to point P = d = 2R

We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:

Icm = 1/2mr²

Icm = 1/2(2M)(R²)

Icm = MR² ... (i)

Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:

Ip = Icm + mp²

Ip = MR² + (2M)R²

Ip = 3MR² ... (ii)

Then, the total moment of inertia of the disk with the point mass is:

I total = Ip + I mass

I total = 3MR² + (1/2M)(2R)²

I total = 3MR² + 2MR²

I total = 5MR² ... (iii)

Learn more about Uniform Flat Disk here: brainly.com/question/14595971

#SPJ4

8 0
1 year ago
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding. Disregarding friction, what is the velo
lilavasa [31]

Answer:

The velocity of the Mr. miles is 17.14 m/s.

Explanation:

It is given that,

Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m

We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

v=\sqrt{2gh}

g is the acceleration due to gravity

v=\sqrt{2\times 9.8\times 15}

v = 17.14 m/s

So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.

5 0
3 years ago
Other questions:
  • The tissue of living organisms does not contain solid metal, like a copper wire or a zinc plate. However, electric current flows
    5·1 answer
  • If the tensile strength of the Kevlar 49 fibers is 0.550 x 106 psi and that of epoxy resin is 11.0 x103 psi, calculate the stren
    5·1 answer
  • 4) The mass of Pluto is 1.31 x 1022 kg and its radius is 1.15 x 106 m. What is the acceleration of
    5·1 answer
  • Help??????????????????????????
    10·1 answer
  • A 1.60-kg object is held 1.05 m above a relaxed, massless vertical spring with a force constant of 330 N/m. The object is droppe
    8·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    10·1 answer
  • Fill in the blank.
    5·1 answer
  • A car accelerates from rest at a constant rate of 1.6
    7·1 answer
  • A wave has a frequency of 12 Hz and a wavelength of 5 m. What is the wave speed?
    13·1 answer
  • In the ballistic pendulum experiment, a bullet of mass 0.06 kg is fired
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!