Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Below are the choices:
<span>The independent variable is the number of dry cells, and the dependent variable is the length of time the bulb works.
</span><span>The independent variable is the length of time the bulb works, and the dependent variable is the number of dry cells.
</span><span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.
</span><span>The independent variable is the amount of energy available, and the dependent variable is the number of dry cells.
</span>
I think the answer is <span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.</span>
She will most likely observe that the temperature
does not change during melting because the heat absorbed is used to overcome
intermolecular forces rather than to increase the kinetic energy of the
particles if she measures the temperature of the water in the beaker.
Answer:
Molecules move freely around since they don't have a definite shape. This is the reason water stays liquid and couldn't be gripped.