Answer:
Alpha decay is a type of radioactive disintegration in which unstable atomic nucleus releases a helium nucleus or alpha particle and transform into a different element. The new element formed will be reduced by four and the atomic number will be reduced by two.
Example of alpha decay is: Uranium 238 transform into Thorium 234 with the emission of an alpha particle.
Lets take 100 g of this compound,
so it is going to be 2.00 g H, 32.7 g S and 65.3 g O.
2.00 g H *1 mol H/1.01 g H ≈ 1.98 mol H
32.7 g S *1 mol S/ 32.1 g S ≈ 1.02 mol S
65.3 g O * 1 mol O/16.0 g O ≈ 4.08 mol O
1.98 mol H : 1.02 mol S : 4.08 mol O = 2 mol H : 1 mol S : 4 mol O
Empirical formula
H2SO4
Answer:
0.1 M
<h3>
Explanation:</h3>
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing the number of moles of solute by the volume of solvent;
- Molarity = Moles of the solute ÷ Volume of the solvent
<u>In this case, we are given;</u>
- Number of moles of the solute, NH₄Cl as 0.42 moles
- Volume of the solvent, water as 4200 mL or 4.2 L
Therefore;
Molarity = 0.42 moles ÷ 4.2 L
= 0.1 mol/L or 0.1 M
Thus, the molarity of the solution will be 0.1 M
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.