1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
11

In what order do the sun ,moon , and earth need to be in to cause a solar eclipse

Chemistry
2 answers:
labwork [276]3 years ago
6 0
Earth is between the sun and the moon
maxonik [38]3 years ago
3 0
Actually I did the quiz and the answer was 

D)The moon is between Earth and the Sun  

Hope it helped thanks for trying:)
You might be interested in
What would happen to the equilibrium mixture if the chlorine gas was allowed to escape? (explain your answer )
almond37 [142]
<span>Mimicupcakes650 Beginner answered 5 minutes ago ... What would happen to the equilibrium mixture if the chlorine gas was allowed to escape? (explain your answer ) from Gabbymarriott. 1 answer ... Describe the physical and chemical properties of the raft that would be important to ensure your safety. from Dustyy.</span>
6 0
3 years ago
How will adding NaCl affect the freezing point of a solution?
lord [1]

Answer is: adding NaCl will lower the freezing point of a solution.

A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).

The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.

Equation describing the change in freezing point:  

ΔT = Kf · b · i.

ΔT - temperature change from pure solvent to solution.

Kf - the molal freezing point depression constant.

b -  molality (moles of solute per kilogram of solvent).

i - Van’t Hoff Factor.

Dissociation of sodium chloride in water: NaCl(aq) →  Na⁺(aq) + Cl⁻(aq).

3 0
3 years ago
Read 2 more answers
3. What is the energy of a photon whose frequency is 5.2 x 1015 Hz? Use the equation: E = hxv
anzhelika [568]

Answer:

3. 3.45×10¯¹⁸ J.

4. 1.25×10¹⁵ Hz.

Explanation:

3. Determination of the energy of the photon.

Frequency (v) = 5.2×10¹⁵ Hz

Planck's constant (h) = 6.626×10¯³⁴ Js

Energy (E) =?

The energy of the photon can be obtained by using the following formula:

E = hv

E = 6.626×10¯³⁴ × 5.2×10¹⁵

E = 3.45×10¯¹⁸ J

Thus, the energy of the photon is 3.45×10¯¹⁸ J

4. Determination of the frequency of the radiation.

Wavelength (λ) = 2.4×10¯⁵ cm

Velocity (c) = 3×10⁸ m/s

Frequency (v) =?

Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:

100 cm = 1 m

Therefore,

2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm

2.4×10¯⁵ cm = 2.4×10¯⁷ m

Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m

Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:

Wavelength (λ) = 2.4×10¯⁷ m

Velocity (c) = 3×10⁸ m/s

Frequency (v) =?

v = c / λ

v = 3×10⁸ / 2.4×10¯⁷

v = 1.25×10¹⁵ Hz

Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.

8 0
2 years ago
A student placed 18.5 g of glucose (C6H12O6) in a volumetric flask, added enough water to dissolve the glucose by swirling, then
mamaluj [8]

Answer:

1.30464 grams of glucose was present in 100.0 mL of final solution.

Explanation:

Molarity=\frac{moles}{\text{Volume of solution(L)}}

Moles of glucose = \frac{18.5 g}{180 g/mol}=0.1028 mol

Volume of the solution = 100 mL = 0.1 L (1 mL = 0.001 L)

Molarity of the solution = \frac{0.1028 mol}{0.1 L}=1.028 mol/L

A 30.0 mL sample of above glucose solution was diluted to 0.500 L:

Molarity of the solution before dilution = M_1=1.208 mol

Volume of the solution taken = V_1=30.0 mL

Molarity of the solution after dilution = M_2

Volume of the solution after dilution= V_2=0.500L = 500 mL

M_1V_1=M_2V_2

M_2=\frac{M_1V_1}{V_2}=\frac{1.208 mol/L\times 30.0 mL}{500 mL}

M_2=0.07248 mol/L

Mass glucose are in 100.0 mL of the 0.07248 mol/L glucose solution:

Volume of solution = 100.0 mL = 0.1 L

0.07248 mol/L=\frac{\text{moles of glucose}}{0.1 L}

Moles of glucose = 0.07248 mol/L\times 0.1 L=0.007248 mol

Mass of 0.007248 moles of glucose :

0.007248 mol × 180 g/mol = 1.30464 grams

1.30464 grams of glucose was present in 100.0 mL of final solution.

4 0
3 years ago
Andesitic rock is an igneous rock with a composition in between that of basaltic and granitic igneous rock.
Ne4ueva [31]

Answer:

Explanation:

intristing

8 0
3 years ago
Other questions:
  • Which one? Please help me thank you
    9·1 answer
  • What is the second quantum number of the 3p1 electron in aluminum 1s22s22p63s23p1?
    10·2 answers
  • Calculate the molar mass of an unknown solid (assume a non-electrolyte), if 1.35 grams of th esolid was dissolved in 15.0 grams
    10·1 answer
  • TAC CAT CAT CAT TAG what type of mutations happen?
    11·2 answers
  • g How many grams of beryllium are needed to produce "11.5" g of hydrogen gas?Be(s) + 2H 2 O(l) → Be(OH) 2 (aq) + H 2 (g)
    5·1 answer
  • Dalam kajian geografi, cara pandang dan cara pikir terhadap objek material dari sudut geografi disebut objek
    6·1 answer
  • During the rock cycle, rocks get broken apart by weathering, carried along by erosion, and eventually deposited in a body of wat
    8·2 answers
  • Some plants have fleshy stems and leaves that can store water. In which type of habitat would these adaptations be important
    10·1 answer
  • How many grmas of CaCO3 are present in a sample if there are 4. 52 x 10^24 atoms of carbon in that sample?
    15·1 answer
  • A solution that contains less than the amount of solute that would be dissolved at equilibrium is considered to be
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!