We know that: 1 L = 100 cL. Or 1 cL = 0.01 L. Then we will make the conversion: 34.9 cL = 34.9 / 100 L = 0.349 L. Also: 1 hL = 100 L. 0.349 L = 0.349 / 100 hL = 0.00349 hL. This can be also written as: 3.49 * 10^(-3) hL ( in the scientific notation ). Answer: 3.49 cL = 0.00349 <span>hL </span>
Answer:
0.1 m/s
Explanation:
Please see attached photo for explanation.
Mass of 1st cart (m₁) = 500 g
Initial velocity of 1st cart (u₁) = 0.25 m/s
Mass of 2nd cart (m₂) = 750 g
Initial velocity of 2nd cart (u₂) = 0 m/s
Velocity (v) after collision =.?
m₁u₁ + m₂u₂ = v(m₁ + m₂)
(500 × 0.25) + (750 × 0) = v(500 + 750)
125 + 0 = v(1250)
125 = 1250v
Divide both side by 1250
v = 125 / 1250
v = 0.1 m/s
Thus, the two cart will move with a velocity of 0.1 m/s after collision.
Answer:
(D) the sphere
Explanation:
The bodies given are Disk and Solid sphere (uniform sphere)
Moment of inertia of the bodies are
I(disk) =
I(sphere) = 
Since the moment of inertia of sphere is less than that of disk, therefore sphere will reach the bottom first.
Answer:
The extension is directly proportional to the force applied.
ex: if the force is doubled, the extension doubles. This works until the limit of proportionality is exceeded.
Hope this helped~
Explanation:
Some work will be done on friction between wheels and road but it is negligible compared to work done on friction on breaks.
W = Ek = (m*v^2)/2 = 2000*22^2/2 = 1000*22^2 = 484KJ
Because car is not changing its potential energy, there is no work to be done on while changing it which means that all goes on changing kinetic energy (energy of motion)