<h2>
Answer:</h2>
(a) Cartesian coordinate (2.8191m, 1.0260m) and (-2.6810m, 2.2498m)
(b) distance = 5.6346m
<h2>
Explanation:</h2>
Given a polar coordinate (r, θ);
Its Cartesian coordinate is (x, y) where;
x = r cos θ
y = r sin θ
Now, given the polar coordinate (3.00, 20.0⁰)
Its Cartesian coordinate is (x, y) where
x = 3.00 cos 20.0° = 3.00 x 0.9397 = 2.8191m
y = 3.00 sin 20.0° = 3.00 x 0.3420 = 1.0260m
Therefore,
Polar coordinate (3.00m, 20.0°) = Cartesian coordinate (2.8191m, 1.0260m)
Also,
Now, given the polar coordinate (3.50, 140.0⁰)
Its Cartesian coordinate is (x, y) where
x = 3.50 cos 140.0° = 3.50 x -0.7660 = -2.6810m
y = 3.40 sin 140.0° = 3.50 x 0.6428 = 2.2498m
Therefore,
Polar coordinate (3.50m, 140.0°) = Cartesian coordinate (-2.6810m, 2.2498m)
(a) Polar coordinates (3.00m, 20.0°) and (3.50m, 140.0°) = Cartesian coordinate (2.8191m, 1.0260m) and (-2.6810m, 2.2498m)
(b) To calculate the distance between them, it is easier to use the values from the Cartesian representation as follows;
distance = ![\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%20%7D)
where;
(
,
) = (2.8191m, 1.0260m) and
(
,
) = (-2.6810m, 2.2498m)
=> distance = ![\sqrt{(-2.6810 - 2.8191)^{2} + (2.2498 - 1.0260)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B%28-2.6810%20-%202.8191%29%5E%7B2%7D%20%2B%20%282.2498%20-%201.0260%29%5E%7B2%7D%20%7D)
=> distance = ![\sqrt{(-5.5001)^{2} + (1.2238)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B%28-5.5001%29%5E%7B2%7D%20%2B%20%281.2238%29%5E%7B2%7D%20%7D)
=> distance = ![\sqrt{30.2511+1.4977}](https://tex.z-dn.net/?f=%5Csqrt%7B30.2511%2B1.4977%7D)
=> distance = ![\sqrt{31.7488}](https://tex.z-dn.net/?f=%5Csqrt%7B31.7488%7D)
=> distance = 5.6346m