Answer:
a) Yes
b) No
Explanation:
In the first case, part a, yes we can say for certainty that cylinderical symmetry holds. Why so? You may ask. This is because from the question, we are told that the length of the rod is 300 cm. And this said length is longer than the distance to the point from the center of the rod, which is 5 cm.
In the second half of the question, I beg to disagree that cylindrical symmetry holds. Again, you may ask why, this is because the length of the rod in this case, is having the same order of magnitude as the distance to the center of the rod. Thus, it is not symmetrical.
Answer:
trying to push a rock that never moves
Explanation:
Vol of sphere = 4/3 pi r^2.density of sphere = mass/volume.mass = densityxvolumesphere 1. mass = density x 4/3 pi 4.5^2sphere 2 5mass = density x 4/3 pi r^25=4/3 pi r^2 divided by 4/3 pi 4.5^25=r^2 divided by 4.5^25x4.5^2=r^2root(5x4.5^2)=r4.5 root 5 = r
Answer:
420 L
Explanation:
Applying Boyle's Law,
PV = P'V'.................... Equation 1
Where P = Initial pressure, P' = Final pressure, V = Initial volume, V' = Final volume.
make V' the subject of the equation
V' = PV/P'.................... Equation 2
From the question,
Given: P = 720 mmHg, V = 350 L, P' = 600 mmHg
Substitute these values into equation 2
V' = (720×350)/600
V' = 252000/600
V' = 420 L
The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4