Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
Answer:
A. Students made a measurement error, because ending with more products is impossible.
Explanation:
The law of conversation of matter tells us that in a chemical reaction, matter is never created or destroyed, it's simply converted from one form to another. So the mass of reactants should always equal the mass of the products in a chemical reaction. If there is excess mass in the product, the students have made an error of some kind.
Answer:
The heat of the reaction is 105.308 kJ/mol.
Explanation:
Let the heat released during reaction be q.
Heat gained by water: Q
Mass of water ,m= 1kg = 1000 g
Heat capacity of water ,c= 4.184 J/g°C
Change in temperature = ΔT = 26.061°C - 25.000°C=1.061 °C
Q=mcΔT
Heat gained by bomb calorimeter =Q'
Heat capacity of bomb calorimeter ,C= 4.643 J/g°C
Change in temperature = ΔT'= ΔT= 26.061°C - 25.000°C=1.061 °C
Q'=CΔT'=CΔT
Total heat released during reaction is equal to total heat gained by water and bomb calorimeter.
q= -(Q+Q')
q = -mcΔT - CΔT=-ΔT(mc+C)

Moles of propane =
0.0422 moles of propane on reaction with oxygen releases 4.444 kJ of heat.
The heat of the reaction will be:

Hdhdjejdhebdehxhshwhdb d nonsense
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1