Answer:
Q was < K. Partial pressure of hydrogen decreased, iodine increased
Explanation:
<em>After iodine was added the Q was [Select] K so the reaction shifted toward the Products [Select] ,The partial pressure of hydrogen [Select], Iodine [Select] |,and hydrogen iodide Decreased</em>
Based on the equilibrium:
H2(g) + I2(g) ⇄ 2HI(g)
K of equilibrium is:
K = [HI]² / [H2] [I2]
<em>Where [] are concentrations at equilibrium</em>
And Q is:
Q = [HI]² / [H2] [I2]
<em>Where [] are actual concentrations of the reactants.</em>
<em />
When the reaction is in equilibrium, K=Q.
But as [I2] is increased, Q decreases and Q was < K
The only concentration that increases is [I2], doing partial pressure of hydrogen decreased, iodine increased
374u
187u
C₁₄H₂₂N₄O₈
Explanation:
To find the molecular weight of the compound C₁₄H₂₂N₄O₈ we simply sum that atomic masses of the given elements in the compound.
The empirical weight is determined by using the simplest ratio of the elements involved in the compound;
Molecular weight of C₁₄H₂₂N₄O₈;
atomic mass of C = 12g/mol
H = 1g/mol
N = 14g/mol
O = 16g/mol
Molecular weight = 14(12) + 22(1) + 4(14) + 8(16)
= 168 + 22 + 56 + 128
= 374u
Empirical weight:
Empirical formula:
C₁₄ H₂₂ N₄ O₈
14 : 22 : 4 : 8
divide by 2:
7 : 11 : 2 : 4
empirical formula C₇H₁₁N₂O₄
empirical weight =
=
= 187u
The molecular formula is the actual combination of atoms in a compound. so the molecular formula of the compound is C₁₄H₂₂N₄O₈
learn more:
Molecular mass brainly.com/question/5546238
#learnwithBrainly
Answer:
The mass remains same after and before the reaction
Explanation:
This is because of law of conservation of mass
Which states that
- In a chemical reaction mass is neither created nor destroyed,it remains conserved .