Answer:
The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero
Explanation:
The expression for the maximum shear stress is given:

Where
σx = stress in vertical plane = 20 ksi
σy = stress in horizontal plane = -30 ksi
τM = 32 ksi
Replacing:

Solving for τxy:
τxy = ±19.98 ksi
The principal stress is:

Where
σp1 = 20 ksi
σp2 = -30 ksi
(equation 1)
equation 2
Solving both equations:
σp1 = 27 ksi
σp2 = -37 ksi
The shear stress on the vertical plane is zero
Answer:
Only Technician B is right.
Explanation:
The cylindrical braking system for a car works through the mode of pressure transmission, that is, the pressure applied to the brake pedals, is transmitted to the brake pad through the cylindrical piston.
Pressure applied on the pedal, P(pedal) = P(pad)
And the Pressure is the applied force/area for either pad or pedal. That is, P(pad) = Force(pad)/A(pad) & P(pedal) = F(pedal)/A(pedal)
If the area of piston increases, A(pad) increases and the P(pad) drops, Meaning, the pressure transmitted to the pad reduces. And for most cars, there's a pressure limit for the braking system to work.
If the A(pad) increases, P(pad) decreases and the braking force applied has to increase, to counter balance the dropping pressure and raise it.
This whole setup does not depend on the length of the braking lines; it only depends on the applied force and cross sectional Area (size) of the piston.
“Thinking about pleasant things to pass the time” would not promote safety in the shop because it would be taking the focus away from important tasks, which in turn decreases safety.
Answer:
note:
solution is attached due to error in mathematical equation. please find the attachment
Answer:
The power developed by engine is 167.55 KW
Explanation:
Given that

Mean effective pressure = 6.4 bar
Speed = 2000 rpm
We know that power is the work done per second.
So

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.
P=167.55 KW
So the power developed by engine is 167.55 KW