1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
8

The proposed grading at a project site will consist of 25,100 m3 of cut and 23,300 m3 of fill and will be a balanced earthwork j

ob. The cut area has an average moisture content of 8.3%. The fill will be compacted to an average relative compaction of 93% based on a maximum dry unit weight of 18.3 kN/m3 and an optimum moisture content of 12.9% obtained from the modified Proctor test. Please round all the final answers in this problem to integers. The volume of water that will be required to bring these soils to the optimum moisture content is _________
Engineering
1 answer:
Anna [14]3 years ago
6 0

Answer:

the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

Explanation:

Given that;

volume of cut = 25,100 m³

Volume of dry soil fill = 23,300 m³

Weight of the soil will be;

⇒ 93% × 18.3 kN/m³ × 23,300 m³

= 0.93 × 426390 kN 3

= 396,542.7 kN  

Optimum moisture content = 12.9 %

Required amount of moisture = (12.9 - 8.3)% = 4.6 %

So,

Weight of water required = 4.6% × 396,542.7 = 18241 kN

Volume of water required = 18241 / 9.81 = 1859 m³

Volume of water required = 1859 kL

Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL

You might be interested in
An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
s344n2d4d5 [400]

Answer:

Among the different types of excavation protection system, as a way of preventing accidents against cave-ins, the sloping involves cutting back the trench wall at an angle inclined away from the excavation. Shoring requires installing aluminum hydraulic or other types of supports to prevent soil movement and cave-ins. Shielding protects workers by using trench boxes or other types of supports to prevent soil cave-ins (OSHA). In addition, the regulations do not allow employees to work on excavations where there is an accumulation of water. If this occurs, water on the site must be constantly removed by suitable equipment preventing water from accumulating. The entry of surface water into the excavations must also be prevented by means of diversion ditches, dam, or other suitable means.  

Explanation:

3 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
A Pitot-static probe is used to measure the speed of an aircraft flying at 3000 m. If the differential pressure reading is 3200
coldgirl [10]

Answer:

Speed of aircraft ; (V_1) = 83.9 m/s

Explanation:

The height at which aircraft is flying = 3000 m

The differential pressure = 3200 N/m²

From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3

Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.

Thus, let's apply the Bernoulli equation :

P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2

Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.

We'll obtain ;

P1/ρg + (V_1)²/2g = P2/ρg

Let's make V_1 the subject;

(V_1)² = 2(P1 - P2)/ρ

(V_1) = √(2(P1 - P2)/ρ)

P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question

Thus,

(V_1) = √(2 x 3200)/0.909)

(V_1) = 83.9 m/s

4 0
3 years ago
The article provides information by using a list. What does it list? A. Thanksgiving food B. places where clams can be found C.
Gelneren [198K]

Answer:

C

Explanation:

7 0
3 years ago
In a planetary geartrain with a form factor of 8, the sun gear rotates clockwise at 5 rad⁄s and the ring gear rotates clockwise
lina2011 [118]

Answer:

D. N= 11. 22 rad/s (CW)

Explanation:

Given that

Form factor R = 8

Speed of sun gear = 5 rad/s (CW)

Speed of ring gear = 12 rad/s (CW)

Lets take speed of carrier gear is N

From Algebraic method ,the relationship between speed and form factor given as follows

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

here negative sign means that ring and sun gear rotates in opposite direction

Lets take CW as positive and ACW as negative.

Now by putting the values

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

\dfrac{5-N}{12-N}=-8

N= 11. 22 rad/s (CW)

So the speed of carrier gear is 11.22 rad/s clockwise.

8 0
3 years ago
Other questions:
  • A cylindrical tank is required to contain a gage pressure 520 kPa . The tank is to be made of A516 grade 60 steel with a maximum
    6·1 answer
  • Takt time is the rate at which a factory must produce to satisfy the customer's demand. a)- True b)- False
    11·1 answer
  • Assume the following LTI system where the input signal is an impulse train (i.e.,x(t)=∑????(t−nT0)[infinity]n=−[infinity].a)Find
    10·1 answer
  • In the lab, a container of saturated soil had a mass of 113.27 g before it was placed in the oven and100.06 g after the soil had
    15·1 answer
  • Explain the difference in the heat transfer modes of conduction and convection.
    14·1 answer
  • What is hardness and how is it generally tested?
    12·1 answer
  • Why do engineers (and others) use the design process?
    13·1 answer
  • ?Why the efficiency of Class A amplifier is very poor​
    11·1 answer
  • Which type of elevated stand does not need a tree?
    13·1 answer
  • Hi I'm trying to build a desk that moves up and down electrically but i need help
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!