Answer:
Sound barrier.
Explanation:
Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.
Sheeeeeesh bro same name ayoooo??
Answer: The net force in every bolt is 44.9 kip
Explanation:
Given that;
External load applied = 245 kip
number of bolts n = 10
External Load shared by each bolt (P_E) = 245/10 = 24.5 kip
spring constant of the bolt Kb = 0.4 Mlb/in
spring constant of members Kc = 1.6 Mlb/in
combined stiffness factor C = Kb / (kb+kc) = 0.4 / ( 0.4 + 1.6) = 0.4 / 2 = 0.2 Mlb/in
Initial pre load Pi = 40 kip
now for Bolts; both pre load Pi and external load P_E are tensile in nature, therefore we add both of them
External Load on each bolt P_Eb = C × PE = 0.2 × 24.5 = 4.9 kip
So Total net Force on each bolt Fb = P_Eb + Pi
Fb = 4.9 kip + 40 kip
Fb = 44.9 kip
Therefore the net force in every bolt is 44.9 kip
Answer:
Answer for the question :
"the two boxcars A and B have a weight of 20 000 Ib and 30 000 Ib, respectively. If they coast freely down the incline when the brakes are applied to all the wheels of car A causing it to skid, determine the force in the coupling C between the two cars. The coefficient of kinetic friction between the wheels of A and the tracks is μk=0.5. The wheels of car B are free to roll. Neglect their mass in calculation."
is explained in the attachment.
Explanation: