Answer:
Decreased risk of structure failure
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer:
Greywater.
Explanation:
Greywater is also known as sullage and it can be defined as any form of gently used wastewater derived from sources within a residential or office building such as showers, washing machines, bathroom sinks, bathroom tub, etc.
Generally, greywater or sullage is completely free of fecal materials (faeces) because it is independent from all toilet activities. However, greywater is not clean for direct use because it usually contains food particles, dirt, oil from dishes, hair, etc.
In this scenario, Anna makes arrangements to reuse waste water that has been used in sinks and showers. Greywater is a term which refers to the waste water that Anna reuses to conserve resources.
Therefore, Anna reuses greywater to conserve resources.
Answer:
the state of the circuit is a function of the voltage level. The interpretation is up to the user.
Explanation:
A binary digital circuit adopts one of two states, depending on whether the voltage level is above or below some threshold that depends on the design of the circuit. Within each state, the voltage may have some typical range. When the voltage is near the threshold, the state of the circuit may actually be "indeterminate".
The internal/output voltage is a function of the state of the circuit. The interpretation of that voltage as a true/false or 1/0 or other meaning is up to the user of the circuit.
The circuit interprets a given input voltage as intending to convey a particular input signal state according to the circuit specifications. Input voltages near the threshold between states may cause unexpected or even destructive results.
__
In order to conserve space, some digital circuits use more than 2 different voltage levels to signify more than 2 different states.
Answer:
See explanation
Explanation:
Solution:-
- Three students measure the volume of a liquid sample which is 6.321 L.
- Each student measured the liquid sample 4 times. The data is provided for each measurement taken by each student as follows:
Students
Trial A B C
1 6.35 6.31 6.38
2 6.32 6.31 6.32
3 6.33 6.32 6.36
4 6.36 6.35 6.36
- We will define the two terms stated in the question " precision " and "accuracy"
- Precision refers to how close the values are to the sample mean. The dense cluster of data is termed to be more precise. We will use the knowledge of statistics and determine the sample standard deviation for each student.
- The mean measurement taken by each student would be as follows:

- The precision can be quantize in terms of variance or standard deviation of data. Therefore, we will calculate the variance of each data:

- We will rank each student sample data in term sof precision by using the values of variance. The smallest spread or variance corresponds to highest precision. So we have:
Var ( A ) < Var ( B ) < Var ( C )
most precise Least precise
- Accuracy refers to how close the sample mean is to the actual data value. Where the actual volume of the liquid specimen was given to be 6.321 L. We will evaluate the percentage difference of sample values obtained by each student .

- Now we will rank the sample means values obtained by each student relative to the actual value of the volume of liquid specimen with the help of percentage difference calculated above. The least percentage difference corresponds to the highest accuracy as follows:
P ( B ) < P ( A ) < P ( C )
most accurate least accurate