Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C
Answer:
The speed of shaft is 1891.62 RPM.
Explanation:
given that
Amplitude A= 0.15 mm
Acceleration = 0.6 g
So
we can say that acceleration= 0.6 x 9.81

We know that

So now by putting the values



We know that
ω= 2πN/60
198.0=2πN/60
N=1891.62 RPM
So the speed of shaft is 1891.62 RPM.
Answer:
note:
solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment
Answer:
2.379m
Explanation:
The width = 23m
The depth = 3m
The radius is denoted as R
The wetted area is = A
The perimeter perimeter = P
Hydraulic radius
R = A/P
The area of a rectangular channel
= Width multiplied by Depth
A = 23x3
A = 69m²
Perimeter = (2x3)+23
P = 6+23
P= 29
Hydraulic radius R = 69/29
= 2.379m
This answers the question
Thank you!
Answer:
2.46 * 10⁵ W/m³
Explanation:
See attached pictures for detailed explanation.