Answer:
x = 12
m∠A = 104º
m∠B = 32º
m∠C = 44º
shortest side = B
middle side = C
longest side = A
Step-by-step explanation:
Recall that all angles in a triangle add up to 180º. Also recall that the side opposite largest angle is the longest side, and vice versa for the side opposite the smallest angle.
Answer: the greatest number of courses for which miranda can register is 2
Step-by-step explanation:
Let x represent the number of courses for which Miranda can register.
If her college charges a $90 registration fee for the term plus $475 per course, it means that the total amount that the college charges for x courses would be
475x + 90
Miranda’s financial aid stipulates that her tuition not exceed $1200(it must be at most $1200). This means that
475x + 90 ≤ 1200
475x ≤ 1200 - 90
475x ≤ 1110
x ≤ 1110/475
x ≤ 2.34
Answer:
t = 460.52 min
Step-by-step explanation:
Here is the complete question
Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 liters of a dye solution with a concentration of 1 g/liter. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 liters/min, the well-stirred solution flowing out at the same rate.Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.
Solution
Let Q(t) represent the amount of dye at any time t. Q' represent the net rate of change of amount of dye in the tank. Q' = inflow - outflow.
inflow = 0 (since the incoming water contains no dye)
outflow = concentration × rate of water inflow
Concentration = Quantity/volume = Q/200
outflow = concentration × rate of water inflow = Q/200 g/liter × 2 liters/min = Q/100 g/min.
So, Q' = inflow - outflow = 0 - Q/100
Q' = -Q/100 This is our differential equation. We solve it as follows
Q'/Q = -1/100
∫Q'/Q = ∫-1/100
㏑Q = -t/100 + c

when t = 0, Q = 200 L × 1 g/L = 200 g

We are to find t when Q = 1% of its original value. 1% of 200 g = 0.01 × 200 = 2

㏑0.01 = -t/100
t = -100㏑0.01
t = 460.52 min