Answer:
ΔS=2*m*Cp*ln((T1+T2)/(2*(T1*T2)^1/2))
Explanation:
The concepts and formulas that I will use to solve this exercise are the integration and the change in the entropy of the universe. To calculate the final temperature of the water the expression for the equilibrium temperature will be used. Similarly, to find the change in entropy from cold to hot water, the equation of the change of entropy will be used. In the attached image is detailed the step by step of the resolution.
The thermal energy is proportional to the movement of the particles in every state.
Decreasing the thermal energy will decrease the movement.
Answer:
Wave A.
Explanation:
The energy of a wave is directly proportional to the square of the amplitude.
If a wave has higher amplitude, it will have more energy. On the other hand, a wave having lower amplitude, it will have less eenergy.
In this case, we need to tell which wave has higher energy. Hence, the correct option is A because it has a higher amplitude.