1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
10

Please help me out i'm so depressed and such a failure

Physics
1 answer:
Anika [276]3 years ago
5 0

Answer: a variety of ohmic valu example, VIN = VR1 + VR2.

Potentiometer Example No1

A resistor of 250 ohms is connected in series with a second resistor of 750 ohms so that the 250 ohm resistor is connected to a supply of 12 volts and the 750 ohm resistor is connected to ground (0v). Calculate the total series resistance, the current flowing through the series circuit and the voltage drop across the 750 ohm resistor.

potentiometer example one

 

Explanation:

uman ear has a logarithmic response and is therefore non-linear.

If we where to use a linear potentiometer to control the volume, it would give the impression to the ear that most of the volume adjustment was restricted to one end of the pots track. The logarithmic potentiometer however, gives the impression of a more even and balanced volume adjustment across the full rotation of the volume control.

So the operation of a logarithmic potentiometers when adjusted is to produce an output signal which closely matches the nonlinear sensitivity of the human ear making the volume level sound as though it is increasing linearly. However, some cheaper logarithmic potentiometers are more exponential in resistance changes rather than logarithmic but are still called logarithmic because their resistive response is linear on a log scale. As well as logarithmic potentiometers, there are also anti-logarithmic potentiometers in which their resistance quickly increases initially but then levels off.

The all potentiometers and rheostats are available in a choice of different resistive tracks or patterns, known as laws, being either linear, logarithmic, or anti-logarithmic. These terms are more commonly abbreviated to lin, log, and anti-log, respectively.

The best way to determine the type, or law of a particular potentiometer is to set the pots shaft to the center of its travel, that is about half way, and then measure the resistance across each half from wiper to end terminal. If each half has more or less equal resistance, then it’s a Linear Potentiometer. If the resistance appears to be split at about 90% one way and 10% the other then chances are it’s a Logarithmic Potentiometer.

Potentiometer Summary

In this tutorial about potentiometers, we have seen that a potentiometer or variable resistor basically consists of a resistive track with a connection at either end and a third terminal called the wiper with the position of the wiper dividing the resistive track. The position of the wiper on the track is adjusted mechanically by rotating a shaft or by using a screwdriver.

Variable resistors can be categorised into one of two operational modes – the variable voltage divider or the variable current rheostat. The potentiometer is a three terminal device used for voltage control, while the rheostat is a two terminal device used for current control.

We can summarise this in the following table:

Type Potentiometer Rheostat

Number of

Connections Three Terminals Two Terminals

Number of Turns Single and Multi-turn Single-turn Only

Connection Type Connected Parallel with a Voltage Source Connected in Series with the Load

Quantity Controlled Controls Voltage Controls Current

Type of Taper Law Linear and Logarithmic Linear Only

Then the potentiometer, trimmer and rheostat are electromechanical devices designed so that their resistance values can be easily changed. They can be designed as single-turn pots, presets, slider pots, or as multi-turn trimmers. Wirewound rheostats are mainly used to control an electrical current. Potentiometers and rheostats are also available as multi-gang devices and can be classified as having either a linear taper or a logarithmic taper.

Either way, potentiometers can provide highly precise sensing and measurement for linear or rotary movement as their output voltage is proportional to the wipers position. The advantages of potentiometers include low cost, simple operation, lots of shapes, sizes and designs and can be used in a vast array of different applications.

However as mechanical devices, their disadvantages include eventual wear-out of the sliding contact wiper and/or track, limited current handling capabilities (unlike Rheostats), electrical power restrictions and rotational angles that are limited to less than 270 degrees for single turn pots

You might be interested in
A 4.6-kg block of ice originally at 263 K is placed in thermal contact with a 15.7-kg block of silver (cAg = 233 J/kg-K) which i
Viktor [21]

Answer:

temperature at  326.44 K system achieve equilibrium

Explanation:

given data

mass of block of ice = 4.6 kg

temperature = 263 K

thermal contact =  15.7-kg

specific heat of silver  cAg = 233 J/kg-K

initially temperature = 1052 K

to find out

what temperature will the system achieve equilibrium

solution

first we consider final temperature of the system  is T

we know that specific heat of water (C w) = 4186 J(kg K)

and

specific heat of ice ( C i )  = 2030 J/(kg K)

and

latent heat of fusion of ice ( Lf ) = 3.33 × 10^{5} J/kg

and we know that system is insulated

so  heat lost by silver = heat generated by ice    .................1

so we can say

mass of silver × specific heat of silver  × ( initial temp - final temp ) = mass of  ice × specific heat of ice  × ( ice temp ) + mass of  ice × latent heat of fusion of ice + mass of  ice × specific heat of water  × (final temperature )  

put here value we get

mass of silver × specific heat of silver  × ( initial temp - final temp ) = mass of  ice × specific heat of ice  × ( ice temp ) + mass of  ice × latent heat of fusion of ice + mass of  ice × specific heat of water  × (final temperature )

15.7  × 233 × ( 1052 - T ) = 4.6 × 2030 × 10 + 4.6 × 3.33 × 10^{5} + 4.6 × 4286 × ( T - 273 )

solve we get

T =  326.44 K

so temperature at  326.44 K system achieve equilibrium

7 0
3 years ago
Look at the diagrams. Each model the arrangement of particles in a substance.
Kisachek [45]

Answer:

a

Explanation:

because it has  compact  molecules  

5 0
2 years ago
Which of the following statements are true?
olga nikolaevna [1]
C and d are the right answers
6 0
3 years ago
A gun is fired on a day when the speed of sound is 335 m/s and an echo is heard 0.75 seconds later. How far away is the object t
cricket20 [7]

Answer:

v= 335 m/s

2∆t= 0.75 s

∆x= v.∆t → ∆x= 335×½×0.75 = 125.625 m

8 0
3 years ago
What would you get if you split a bar magnet in the middle?
ipn [44]

Answer:

I believe it's the first option

5 0
3 years ago
Other questions:
  • Describe what it means to view something from a frame of reference. Give an example to illustrate your explanation.
    10·1 answer
  • An object is placed 9.5 cm in front of a convex spherical mirror. Its image forms 3.2 cm behind the mirror. What is the radius o
    9·2 answers
  • A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity
    15·2 answers
  • When you snap your wrist open, the frisbee:
    7·2 answers
  • When you throw a pebble straight up with initial speed V, it reaches a maximum height H with no air resistance. At what speed sh
    7·1 answer
  • If a 0.5kg cart is loaded with three 1.5-kg bricks, then the total mass of the loaded cart would be 5.0 kg. If it is moving with
    9·1 answer
  • Plzz answer this question correctly
    14·1 answer
  • Plz answer it..pzzzz​
    8·2 answers
  • How does a battery generate electrical energy
    11·1 answer
  • a standby generator is connected to 1540 w lamps and a musicians 600w amplifying system how much energy is used if the generator
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!