1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
15

Ginny Jones receives $624 gross salary biweekly. Her income tax rate is 14%. Her group health plan contribution is $4.25 per pay

period. She belongs to the company retirement plan, to which she contributes 6% of her earnings. She is also covered under Social Security benefits. Her current contribution is 6.05%. If these items are all her deductions, what is her take-home pay per period? Ginny gets a $35 raise per pay period. If her health plan is unchanged, how much of the raise will she have to take home?
Mathematics
1 answer:
barxatty [35]3 years ago
7 0

Answer:

take home pay $457.20

$30.78 from the raise

Step-by-step explanation:

You might be interested in
What is 4/4 reduced to lowest form
musickatia [10]
4/4=1

4÷4=1
4÷4=1

1/1= 1

hope this helps :)
4 0
3 years ago
Read 2 more answers
Every female bear has 3 baby cubs. What is the constant of proportionality for the ratio of cubs to female bears?
KatRina [158]

Answer:

b

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
A water dispenser fills 4 glasses in 32 seconds. How many glasses will be filled by the dispenser in 128 seconds?
Gemiola [76]

Answer: 48 glasses

Step-by-step explanation:

7 0
3 years ago
A.1/3<br> B.3/8<br> C.4/9<br> D.4/8
Nina [5.8K]

Answer:

It's C

Step-by-step explanation:

3 0
3 years ago
Huh.. can someone please help me, i honestly really need this rn.. :(
Harman [31]

Answer:

If

€

p(x) is a polynomial, the solutions to the equation

€

p(x) = 0 are called the zeros of the

polynomial. Sometimes the zeros of a polynomial can be determined by factoring or by using the

Quadratic Formula, but frequently the zeros must be approximated. The real zeros of a polynomial

p(x) are the x-intercepts of the graph of

€

y = p(x).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The Factor Theorem: If

€

(x − k) is a factor of a polynomial, then

€

x = k is a zero of the polynomial.

Conversely, if

€

x = k is a zero of a polynomial, then

€

(x − k) is a factor of the polynomial.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 1: Find the zeros and x-intercepts of the graph of

€

p(x) =x

4−5x

2 + 4.

€

x

4−5x

2 + 4 = 0

(x

2 − 4)(x

2 −1) = 0

(x + 2)(x − 2)(x +1)(x −1) = 0

x + 2 = 0 or x − 2 = 0 or x +1= 0 or x −1= 0

x = −2 or x = 2 or x = −1 or x =1

So the zeros are –2, 2, –1, and 1 and the x-intercepts are (–2,0), (2,0), (–1,0), and (1,0).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The number of times a factor occurs in a polynomial is called the multiplicity of the factor. The

corresponding zero is said to have the same multiplicity. For example, if the factor

€

(x − 3) occurs to

the fifth power in a polynomial, then

€

(x − 3) is said to be a factor of multiplicity 5 and the

corresponding zero, x=3, is said to have multiplicity 5. A factor or zero with multiplicity two is

sometimes said to be a double factor or a double zero. Similarly, a factor or zero with multiplicity

three is sometimes said to be a triple factor or a triple zero.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 2: Determine the equation, in factored form, of a polynomial

€

p(x) that has 5 as double

zero, –2 as a zero with multiplicity 1, and 0 as a zero with multiplicity 4.

€

p(x) = (x − 5)

2(x + 2)x

4

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 3: Give the zeros and their multiplicities for

€

p(x) = −12x

4 + 36x3 − 21x

2.

€

−12x

4 + 36x3 − 21x

2 = 0

−3x

2(4x

2 −12x + 7) = 0

−3x

2 = 0 or 4x

2 −12x + 7 = 0

x

2 = 0 or x = −(−12)± (−12)

2−4(4)(7)

2(4)

x = 0 or x = 12± 144−112

8 = 12± 32

8 = 12±4 2

8 = 12

8 ± 4 2

8 = 3

2 ± 2

2

So 0 is a zero with multiplicity 2,

€

x = 3

2 − 2

2 is a zero with multiplicity 1, and

€

x = 3

2 + 2

2 is a zero

with multiplicity 1.

(Thomason - Fall 2008)

Because the graph of a polynomial is connected, if the polynomial is positive at one value of x and

negative at another value of x, then there must be a zero of the polynomial between those two values

of x.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 4: Show that

€

p(x) = 2x3 − 5x

2 + 4 x − 7 must have a zero between

€

x =1 and

€

x = 2.

€

p(1) = 2(1)

3 − 5(1)

2 + 4(1) − 7 = 2(1) − 5(1) + 4 − 7 = 2 − 5 + 4 − 7 = −6

and

€

p(2) = 2(2)3 − 5(2)

2 + 4(2) − 7 = 2(8) − 5(2) + 8 − 7 =16 −10 + 8 − 7 = 7.

Because

€

p(1) is negative and

€

p(2) is positive and because the graph of

€

p(x) is connected,

€

p(x)

must equal 0 for a value of x between 1 and 2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If a factor of a polynomial occurs to an odd power, then the graph of the polynomial actually goes

across the x-axis at the corresponding x-intercept. An x-intercept of this type is sometimes called an

odd x-intercept. If a factor of a polynomial occurs to an even power, then the graph of the

polynomial "bounces" against the x-axis at the corresponding x-intercept, but not does not go across

the x-axis there. An x-intercept of this type is sometimes called an even x-intercept.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Example 5: Use a graphing calculator or a computer program to graph

€

y = 0.01x

2(x + 2)3(x − 2)(x − 4)

4 .

x

y

–2 2 4

5

Because the factors

€

(x + 2) and

€

(x − 2) appear to odd

powers, the graph crosses the x-axis at

€

x = −2

and

€

x = 2.

Because the factors x and

€

(x − 4) appear to even

powers, the graph bounces against the x-axis at

€

x = 0

and

€

x = 4.

Note that if the factors of the polynomial were

multipled out, the leading term would be

€

0.01x10.

This accounts for the fact that both tails of the graph

go up; in other words, as

€

x → −∞,

€

y

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Please help, ASAP thank you very much. Benton has an extension ladder than can only be used at a length of 10 feet, 15 feet, or
    15·1 answer
  • After a 25% discount, the price of a bike is $146. What was the original price of the bike?
    8·1 answer
  • The population of the US is about 300,000,000. If Spanish is the primary language for 10.7 percent of the population , about how
    5·2 answers
  • What is the slope of the line shown <br>(4, 2) (-4, -2) <br>m=?
    6·1 answer
  • First, use the "completing the square" process to write this equation in the form (x + D)² = E. x² - 8 x + 12 = 0 is equivalent
    11·1 answer
  • Solve x - 12 = 7 using algebraic operations​
    7·2 answers
  • What is the value of the expression below c =3 and d = 2 ? c² - 2d + 3
    10·1 answer
  • 10
    11·2 answers
  • Steps to solve? 4+3(12÷3)-7
    14·2 answers
  • Please help me with this problem
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!