Answer:
33.3%
Step-by-step explanation:
Let's say the percent change is x%. Then the equation is:
30 + x% * 30 = 40
Subtract 30 from both sides:
x% * 30 = 10
Divide by 30:
x% = 10/30 = 1/3
Remember that % simply means "out of 100", so:
x/100 = 1/3
Multiply both sides by 100:
x = (1/3) * 100 = 33.3%
Answer:
B.(-1,2)
Step-by-step explanation:
In a function, there can not be two different values of y corresponding to the same value of x.
See the graph attached.
Here, the points on the graph are (1,2), (2,-3), (-2,-2) and (-3,1).
If we consider point (-2,2) then there will be two points corresponding to the same x value i.e. (-2,-2) and (-2,2).
Similarly, if we consider the point (2,-2) or (2.-1) then also there becomes more than one values of y for a single value of x i.e. x = 2.
So, if we consider the ordered pair (-1,2) then only the graph still represents a function. (Answer)
Based on the trend of the increase in children born out of wedlock, if this trend keeps increasing, the year with 67% of babies born out of wedlock will be 2055 .
<h3>What year will 67% of babies be born to unmarried parents?</h3><h3 />
In 1990, the 28% of children were born out of wedlock and this trend was increasing by 0.6% per year.
If the trend continues, the number of years till 67% of children born out of wedlock will be:
= (67% - 28%) / 0.6%
= 65 years
The year will be:
= 1990 + 65
= 2055
The first part of the question is:
According to the National Center for Health Statistics, in 1990, 28% of babies in the United States were born to parents who were not married. Throughout the 1990s, this percentage increased by approximately 0.6 per year.
Find out more on benefits of marriage at brainly.com/question/12132551.
#SPJ1
Answer:
Radius of convergence of power series is 
Step-by-step explanation:
Given that:
n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n n is odd
n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n n is even
(-1)!! = 0!! = 1
We have to find the radius of convergence of power series:
![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
Power series centered at x = a is:

![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
![a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]](https://tex.z-dn.net/?f=a_%7Bn%7D%3D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7Dn%21%283%28n%2B1%29%2B3%29%21%282%28n%2B1%29%29%21%21%7D%7B%5B%28n%2B1%2B9%29%21%5D%5E%7B3%7D%284%28n%2B1%29%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D)
Applying the ratio test:
![\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}](https://tex.z-dn.net/?f=%5Cfrac%7Ba_%7Bn%7D%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cfrac%7B%5B%5Cfrac%7B32%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%7D%7B%5B%5Cfrac%7B32%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D%7D)

Applying n → ∞

The numerator as well denominator of
are polynomials of fifth degree with leading coefficients:

Answer:
1 foot = 30.48 centimeters
1 yard = 91.44 centimeters
Step-by-step explanation:
If there are 2.54 centimeters in an inch, and 12 inches in a foot, then you need to multiply 2.54 by 12.
Their are 36 inches in a yard so you need to multiply 2.54 by 36