Answer:
Airbags will deploy in almost any angle.
Explanation:
Cars have sensors around them, so when the car gets hit, the sensors detect a crash and deploy the airbags to keep you safe.
Answer:
1. cout << "Num: " << songNum << endl;
2. cout << songNum << endl;
3. cout << songNum <<" songs" << endl;
Explanation:
//Full Code
#include <iostream>
using namespace std;
int main ()
{
int songNum;
songNum = 5;
cout << "Num: " << songNum << endl;
cout << songNum << endl;
cout << songNum <<" songs" << endl;
return 0;
}
1. The error in the first cout statement is that variable songnum is not declared.
C++ is a case sensitive programme language; it treats upper case and lower case characters differently.
Variable songNum was declared; not songnum.
2. Cout us used to print a Variable that has already been declared.
The error arises in int songNum in the second cout statement.
3. When printing more than one variables or values, they must be separated with <<
Answer: a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.
Explanation:
Giving a way to the law enforcement vehicle and a medical emergency vehicle is necessary. If one approaches an emergency vehicle parked along the roadway one should change the lane as the vehicle may not move and the driver may also waste his or her time also one should also slow down his or her speed while approaching the vehicle as most of the emergency vehicle are in rush to reach the hospital so the driver should maintain some distance with the medical emergency vehicle.
Answer:
1) The exergy of destruction is approximately 456.93 kW
2) The reversible power output is approximately 5456.93 kW
Explanation:
1) The given parameters are;
P₁ = 8 MPa
T₁ = 500°C
From which we have;
s₁ = 6.727 kJ/(kg·K)
h₁ = 3399 kJ/kg
P₂ = 2 MPa
T₂ = 350°C
From which we have;
s₂ = 6.958 kJ/(kg·K)
h₂ = 3138 kJ/kg
P₃ = 2 MPa
T₃ = 500°C
From which we have;
s₃ = 7.434 kJ/(kg·K)
h₃ = 3468 kJ/kg
P₄ = 30 KPa
T₄ = 69.09 C (saturation temperature)
From which we have;
h₄ =
+ x₄×
= 289.229 + 0.97*2335.32 = 2554.49 kJ/kg
s₄ =
+ x₄×
= 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)
The exergy of destruction,
, is given as follows;
= T₀ ×
= T₀ ×
× (s₄ + s₂ - s₁ - s₃)
= T₀ ×
×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)
∴
= 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138 - 2554.49) ≈ 456.93 kW
The exergy of destruction ≈ 456.93 kW
2) The reversible power output,
=
+
≈ 5000 + 456.93 kW = 5456.93 kW
The reversible power output ≈ 5456.93 kW.