Answer:
maximum value of the power delivered to the circuit =3.75W
energy delivered to the element = 3750e^{ -IOOOt} - 7000e ^{-2OOOt} -3750
Explanation:
V =75 - 75e-1000t V
l = 50e -IOOOt mA
power = IV = 50 * 10^-3 e -IOOOt * (75 - 75e-1000t)
=50 * 10^-3 e -IOOOt *75 (1 - e-1000t)
=
maximum value of the power delivered to the circuit =3.75W
the total energy delivered to the element = 

Answer:
An OTG or On The Go adapter (sometimes called an OTG cable, or OTG connector) allows you to connect a full sized USB flash drive or USB A cable to your phone or tablet through the Micro USB or USB-C charging port
Explanation:
pls mark brainliest
Answer:
Manometric difference x=142.85 mm.
Explanation:
Given :
Pipe diameter 
venturi meter 
We can know that discharge through venturi meter is given as





h=1.8 m
We know that 
Where x is the manometric deflection
⇒ 
So x=14.28 mm
Manometric difference x=142.85 mm.
Answer:
12 volts
Explanation:
The voltage ratio is equal to the turns ratio.
secondary/primary = 20/200 = v2/120
v2 = 120(20/200) = 12
The secondary winding voltage is 12 volts.
Answer:
30 mm is the minimum thickness that must be applied.
Explanation:
Given the data in the question;
Using Fourier's equation. the heat rate is
q = kA(ΔT/Δx)
where
A is the surface area, we must consider all surfaces through which the heat can dissipate through
i.e 2×2 for one wall gives you 4m²,
there are 5 walls, so we will have 20m² for surface area.
k is thermal conductivity of the styrofoam ( 0.030 W/m K)
q is the heat loss (500 W )
ΔT is the Temperature difference ( 35 - 10) = 25°C
Δx = ?
So we substitute
500 = (0.030)(20)(25/Δx)
500 = 0.6 (25/Δx)
500 = 15 / Δx
Δx = 15 / 500
Δx = 0.03 m = 30 mm
Therefore, 30 mm is the minimum thickness that must be applied.