1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
3 years ago
6

Carmen bought x candy bars.She gave three of them away. Enter an expression into the box to represent the number of candy bar's

carmen now has. Please help mee
Mathematics
1 answer:
posledela3 years ago
6 0
3  divided by x to find the what the amount of x is

You might be interested in
Katy is deciding which charity to donate to. She is going to donate fifty dollars to each charity chosen, and she can donate to
Natasha2012 [34]

Answer:

Step-by-step explanation:

8 0
3 years ago
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
For questions 1 and 2, use factoring to find the x-intercepts of these quadratic equations.
Marysya12 [62]
1.x^2 +6x - 4 = 6x
X^2 + 6x -4 - 6x = 0
X^2 - 4 = 0
By difference of two squares :
X^2 - 4 = 0 can be written as (x-2) (x+2) = 0
(X-2)=0 therefore x= 2

(X+2)=0 therefore x= -2

2. X^2 - 8x = -6x
X^2 -8x + 6x = 0
X^2 - 2x = 0
X(X-2) = 0
X= 0, X= 2
6 0
3 years ago
A storage container that is in the shape of a rectangular prism has a volume of 60 cubic feet. What could be the dimensions of t
Alexxandr [17]

Answer:

the answer is A and D

Step-by-step explanation:

8 0
3 years ago
What are the equations for these graphs
telo118 [61]
There are no graphs available.
4 0
3 years ago
Other questions:
  • Use distrubitive property to rewrite this question -7(x-10)
    13·1 answer
  • In a random sample of 7 residents of the state of California, the mean waste recycled per person per day was 1.5 pounds with a s
    8·1 answer
  • the length of a rectangle is four less than three times the width. if the perimeter is 36, find the width.
    8·1 answer
  • I need help on this geometry question on triangles
    8·2 answers
  • On a 15 scale drawing of a car, one part is 8 inches long. How long will the actual car part be?
    14·2 answers
  • What is the area of the following circle?
    10·1 answer
  • Find the exact length of the third side .
    12·1 answer
  • -6-2b=-8. What's the answer
    5·1 answer
  • WILL GIVE BRAINLEST IF RIGHT
    5·1 answer
  • Examples of a TRUE biconditional statement, please.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!