1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
15

The sum of two numbers that are at the ratio of 5:7 is 372. Find these numbers.

Mathematics
2 answers:
zloy xaker [14]3 years ago
7 0
X/y= 5/7

x+y=372

x=5/7y

5/7y+y=372


12/7y=372

y = 372(7/12)= 217


x= 155
Maru [420]3 years ago
4 0

The given numbers are in the ratio 5:7. Let the numbers be 5x and 7x, where x is a real number.

The sum of the numbers is 5x+7x=372.

Solve for x,

12x=372\\ x= \frac{372}{12}\\ x=31.

Therefore, the numbers are,

5*31,7*31 or the numbers are 155,217.


You might be interested in
I will give branliest to whoever answers this correctly.
FromTheMoon [43]

Answer:

1

Step-by-step explanation:

i= -1

8 0
3 years ago
Write an explicit and a recursive formula for the sequence.<br> (5,11,17,23,29)
HACTEHA [7]
Starts with 5 then adds 6 repeatedly
7 0
3 years ago
How do you make the colored lines short enough to make a "K"?
earnstyle [38]
Hmmm wait let me try to do it
8 0
3 years ago
Expand using the properties and rules for logarithms
malfutka [58]

Consider expression \log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right).

1. Use property

\log_a\dfrac{b}{c}=\log_ab-\log_ac.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3x^2-\log_{\frac{1}{2}}2.

2. Use property

\log_abc=\log_ab+\log_ac.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3x^2-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+\log_{\frac{1}{2}}x^2-\log_{\frac{1}{2}}2.

3. Use property

\log_ab^k=k\log_ab.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3+\log_{\frac{1}{2}}x^2-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}2.

4. Use property

\log_{a^k}b=\dfrac{1}{k}\log_ab.

Then

\log_{\frac{1}{2}}\left(\dfrac{3x^2}{2}\right)=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}2=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x-\log_{2^{-1}}2=\\ \\=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x+\log_22=\log_{\frac{1}{2}}3+2\log_{\frac{1}{2}}x+1.

Answer: correct option is B.

7 0
3 years ago
A ball is launched into the air from a height of 12 feet at time t = 0. The function that models this situation is h(t) = -2t2 +
marshall27 [118]

Answer:

Step-by-step explanation:

50

6 0
3 years ago
Read 2 more answers
Other questions:
  • I need help ASAP please
    11·2 answers
  • How do you do domain and range​
    10·1 answer
  • Kyles net worth is 500
    12·2 answers
  • 2) Bobby makes model train sets. Each set requires 1,998 pieces of track. At the Hobby store, there are 37 pieces in each box. a
    13·1 answer
  • A store is having a 20% off sale. If the
    11·2 answers
  • Which SI unit is appropriate for measuring the height of a person? A. feet B. meters C. grams D. kilometers
    10·1 answer
  • Find the 27th term of the arithmetic sequence 15, 17.25, 19.5, 21.75,...
    15·2 answers
  • Find the circumference of a circle with diameter 3 yd. use the value 3.14 for pie and do not round round the answer I’m looking
    10·1 answer
  • When you flip a biased coin the probability of getting a tail is 0.25.
    6·1 answer
  • May I please receive help?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!