What is the rest of the question
The answer to the question is c) a dendrochronologist interprets tree rings
Answer:
1) All living things are made up of cells.
2) Cells are the building blocks/smallest unit of life.
3) All cells come from preexisting cells (cell division).
Explanation:
Answer:
The missing word is things.
However, the real question is how one material can serve so many purposes? That is what makes it possible for the spiders web to have a high "utility" value?
The answer is in how the spiders make the silk.
Explanation:
So it interesting to note that spiders do not make only one kind of silk. They vary depending on what purpose it's doing serve.
The most common type is Dragline Silk.
Dragline Silk: This contains spidroins. Spidroins fall under a category of a protein called scleroproteins. Because of its composition, a strand or fiber of Dragline has the same tensile strength as steel albeit more flexible. That is if one produced steel the diameter of a spider's silk, and compared both for strength, the silk will be stronger.
The spider produces Dragline silk in its silk glands where they are as viscous as a paste. From here is pulled out or extruded into lines of silk.
Other types of spider silk are:
- Capture-spiral silk. Also known as the Flagelliform, they are used for securing lines of the web. They are adhesive, very elastic, and possess high tensile strength.
- Tubiliform silk: They are also called Cylindriform. Its main use is for the protection of spider eggs. It is used to make a sac for which protects eggs. This type of silk is the toughest.
- Aciniform silk: For preserving fresh prey.
- Minor-ampullate silk: This type is used by spiders for creating temporary support while they are spinning a web. Etc.
Cheers
Answer:
the diagram explains the process of DNA digestion and DNA ligation, which is usually used in molecular cloning techniques
Explanation:
Molecular cloning can be defined as the process used to synthesize multiple copies of a particular DNA fragment. Molecular cloning requires the insertion of a foreign DNA fragment into an appropriate vector (e.g., a plasmid) through the action of specific enzymes that serve to cut and ligate DNA fragments. DNA digestion and DNA ligation use specific restriction enzymes and DNA ligases, respectively, in order to insert the foreign DNA fragment. For this purpose, restriction enzymes that generate single-stranded overhangs are preferred to create sticky ends which bind by complementary base pairing. Subsequently, a DNA ligase enzyme joins the DNA fragments together in order to create recombinant DNA molecules. DNA Ligation is often achieved by using a specific T4 DNA ligase, while there are many restriction enzymes that generate sticky-ends (e.g., BamHI, EcoRI, BaI228I, etc).