Answer:It is false
Explanation:
I took a quiz with this question in it and I chose true but I got it wrong
Answer: Option (d) is the correct answer.
Explanation:
An equation in which electrolytes are represented in the form of ions is known as an ionic equation.
Strong electrolytes easily dissociate into their corresponding ions. Hence, they form ionic equation.
is a strong acid and is a strong bases, therefore, both of them will dissociate into ions.
Thus, total ionic equation will be as follows.
Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ
I don't know about 14, but 15 is (4), because a liquid draws in heat to turn into a gas. 16 is (2), because to turn into a cold solid, something has to release heat.
Answer:
In this case, the system doesn't be affected by the pressure change. This means that nothing will happen
Explanation:
We can answer this question applying the Le Chatelier's Principle. It says that changes on pressure, volume or temperature of an equilibrium reaction will change the reaction direction until it returns to the equilibrium condition again.
The results of these changes can define as:
Changes on pressure: the reaction will move depending the quantity of moles on each side of the reaction
Changes on temperature: The reaction will move depending on if it's endothermic or exothermic
Changes on volume: The reaction will move depending the limit reagent and the quantity of moles on each side of the reaction
In the exercise, they mention a change on pressure of the system at constant temperature (that means the temperature doesn't change). As Le Chatelier Principle's says, we must analyze what happens if the pressure increase or decrease. If pressure increase the reaction will move on the side that have less quantity of moles, otherwise, if the pressure decreases the reaction will move to the side that have more quantity of moles. In this case, we can see that both sides of the equation have the same number of moles (2 for the reactants and 2 for the products). So, in this case, we can conclude that, despite the change on pressure (increase or decrease), nothing will happen.