Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
Answer:

Explanation:
1. Write the equation for the reaction.
M_r: 24.30
MgCl₂ ⟶ Mg + Cl₂
m/g: 60.0
2. Calculate the moles of Mg
Moles of Mg = 60.0 g Mg × (1 mol Mg/ 24.30 g Mg) = 2.469 mol Mg
3. Calculate the moles of electrons
Moles of electrons = 2.469 mol Mg × (2 mol electrons/1 mol Mg)
= 4.938 mol electrons
4. Calculate the number of coulombs
Q = 4.938 mol electrons × (96 485 C/1 mol electrons) = 476 500 C
5. Calculate the current required
Q = It
I = Q/t
t = 2.00 h × (60 min/1h) × (60 s/1 min) = 7200 s
I = 476 500 C/7600 s= 66.2 C/s = 66.2 A
You need a current of
.