Hey there! Hello!
Not sure if you still need the answer to this question, but I'd love to help out if you do.
So, the way to balance this equation is pretty simple. First, you need to keep in mind that molecules of hydrogen and oxygen do not come in single molecules, but in bonded pairs, represented by H2 and O2.

But, that's incorrect. The combination of 2 hydrogen molecules with 1 oxygen molecule yields water, but that leaves one oxygen molecule leftover. When broken down, this is how many of each molecule is on each side of the previously stated equation:
Left:
H: 2
O: 2
Right:
H: 2
O: 1
So we have to multiply H2O on the right side by 2 in order to get this:

Left:
H: 2
O: 2
Right:
H: 4
O: 2
The last step is to multiply H2 on the left by two to make it match up with the right side, balancing the equation:

Left:
H: 4
O: 2
Right:
H: 4
O: 2
That makes our equation balanced! I hope this helped you out, feel free to ask any additional questions if you need further clarification. :-)
Answer:: We're asked to find the molar concentration of the NaCl solution given some titration data.
Explanation:
Answer:
1.25 Moles
Explanation:
1.25 moles of solute
Explanation:
Molarity is defined as the number of moles of solute per liter of solution.
Molarity = moles of solute / liter of solution
We are given the molarity and volume, both of which have the correct units. All we have to do is rearrange the equation to find the number of moles. You can do this by multiplying both sides of the equation by the volume to cancel it out on the right hand side. Afterwards, you should end up having the volume multiplied by the molarity equaling the number of moles of solute like so:
Moles of solute = Molarity * Volume
2.5M HCl * 0.5 L = 1.25 moles of HCl
I hope this made sense.
The answer is B.
This is the definition of La Châtelier's principle: <span>When the equilibrium of a system is disturbed, the system makes adjustments to restore equilibrium.</span>
Answer:
The answer to your question is 0.54M
Explanation:
Data
Final concentration = ?
Concentration 1 = 0.850 M
Volume 1 = 249 ml = 0.249 l
Concentration 2 = 0.420 M
Volume 2 = 0.667 M
Process
1.- Calculate the number of moles in both solutions
Number of moles 1 = Molarity 1 x Volume 1
= 0.850 x 0.249
= 0.212
Number of moles 2 = Molarity 2 x Volume 2
= 0.420 x 0.667
= 0.280
Total number of moles = 0.212 + 0.280
= 0.492
2.-Calculate the final volume
Final volume = Volume 1 + Volume 2
Final volume = 0.249 + 0.667
= 0.916 l
3.- Calculate Molarity
Molarity = 0.492 / 0.916
Molarity = 0.54