Answer: 4/5
Step-by-step explanation:
The answer is x2<span> – 2</span>x<span> – 9 and that is option C</span>
Answer:
Children: $13
Adults: $18
Step-by-step explanation:
Well for both sets we can set up the following system of equations,

So first we need to solve for a in the first equation.
3a + 4c = 106
-4c to both sides
3a = -4c + 106
Divide 3 by both sides
<u>a = -4/3c + 35 1/3</u>
Now we plug in that a for a in 2a + 3c = 75.
2(-4/3c + 35 1/3) + 3c = 75
-8/3c + 70 2/3 + 3c = 75
Combine like terms
1/3c + 70 2/3 = 75
-70 2/3 to both sides
1/3c = 4 1/3
Divide 1/3 to both sides
c = 13
Now we can plug in 13 for c in 3a + 4c = 106,
3a + 4(13) = 106
3a + 52 = 106
-52 to both sides
3a = 54
Divide 3 by both sides.
a = 18
<em>Thus,</em>
<em>an adult ticket is $18 and a children's ticket is $13.</em>
<em />
<em>Hope this helps :)</em>
We are given expression: 
Let us distribute 3/8 over exponents in parenthesis, we get


We can get x and y out of the radical because, we get whlole number 1 for x and y exponents for the mixed fractions.
So, we could write it as.

Now, we could write inside expression of parenthesis in radical form.
![xy\sqrt[8]{2x^{3}x^4y^7}](https://tex.z-dn.net/?f=xy%5Csqrt%5B8%5D%7B2x%5E%7B3%7Dx%5E4y%5E7%7D)
Check the picture below.
now, let's keep in mind that, the vertex is half-way between the focus point and the directrix, it's a "p" distance from each other.
since this horizontal parabola is opening to the left-hand-side, "p" is negative, notice in the picture, "p" is 2 units, and since it's negative, p = -2.
its vertex is half-way between those two guys, so that puts the vertex at (-5, 3)
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ 4p(y- k)=(x- h)^2 \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-5\\ k=7\\ p=-2 \end{cases}\implies 4(-2)[x-(-5)]=[y-7]^2 \\\\\\ -8(x+5)=(y-7)^2\implies x+5=\cfrac{(y-7)^2}{-8}\implies \boxed{x=-\cfrac{1}{8}(y-7)^2-5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D7%5C%5C%20p%3D-2%20%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%5Bx-%28-5%29%5D%3D%5By-7%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-8%28x%2B5%29%3D%28y-7%29%5E2%5Cimplies%20x%2B5%3D%5Ccfrac%7B%28y-7%29%5E2%7D%7B-8%7D%5Cimplies%20%5Cboxed%7Bx%3D-%5Ccfrac%7B1%7D%7B8%7D%28y-7%29%5E2-5%7D)