A. Move 2 m east and then 12 m east; displacement is 14 m east and the distance is 14 m
B. Move 10 m east and then 12 m west, the displacement is 2 m west and the distance is 22 m.
C. Move 8 m west and then 16 m east; the displacement is 8 m east and the distance is 24 m
D. Move 12 m west and then 8 m east; the displacement is 4 m and the distance is 20 m
The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.
2. This is immediate from (2.2.7).
3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =
Mem me e m even have. Jags. Shah. Shiv side esicjm is n meh dish so do indbbd
Answer:
, 
Explanation:
The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

where
k is the Coulomb constant
e is the magnitude of the charge of the electron
e is the magnitude of the charge of the proton in the nucleus
r is the distance between the electron and the nucleus
v is the speed of the electron
is the mass of the electron
Solving for v, we find

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

while the electron mass is

and the charge is

Substituting into the formula, we find

Answer:
-ripples on the surface of water.
-vibrations in a guitar string.
-a Mexican wave in a sports stadium.
-electromagnetic waves – eg light waves, microwaves, radio waves.
-seismic S-waves.
Explanation:
I've done this question before