Answer:
conservation of momentum, general law of physics according to which the quantity called momentum that characterizes motion never changes in an isolated collection of objects; that is, the to
Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2
Answer:
Explanation:
Work done in lifting the weight once = mgh
= 20 x 9.8 x (1.9+1.7)
= 705.6 J
= 705.6 / 4.2 calorie
= 168 cals
Total energy to be spent = 600 x 10³ cals
No of times weight is required to be lifted
= 600 x 10³ / 168
= 3.57 x 10³ times
Total time to be taken = 2 x 3.57 x 10³
= 7.14 x 10³ s
=119 minutes .
Answer:
the correct answer is C
Explanation:
When we express that the scale is 1:30 we mean that the objects of the realization are reduced by a factor of 30 in the graph, for example a distance of 30 cm in the graph is represented by a distance of 1 cm.
Therefore something that in the graph has n value to bring it to real size must be multiplied by the scale.
Applying this to our case if there is
10 boulder on the chart
in reality there are #_boulder = 10 30
#_boulder = 300 boulder
so the correct answer is C
Answer:
3.82 ms
Explanation:
The period of a wave is equal to the reciprocal of the frequency:

where f is the frequency.
In this problem, f = 262 Hz, so the period if this sound wave is
