What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay
Answer:
ok confusion but we could figure it out right
Explanation:
<h3>dhdjhdndnd but its fine how was your day tho </h3>
Answer:
velocity and displacement answer
Explanation:
thanks me
Answer:
16 cm
Explanation:
Given that,
The object begins from 0 and moves 3cm towards left side followed by 7 cm towards the right and then, 6 cm towards the left side.
Let the x-axis to be the +ve and on the right side and -ve on the left
Thus, displacement would be:
= 0 -3 + 7 -6
= -2 cm
This implies that the object displaces 2cm towards the left.
While the total distance covered by the object equal to,
= 0cm + 3cm + 7cm + 6cm
= 16 cm
Thus, <u>16 cm</u> is the total distance.