A galvanic cell is formed when two metals are immersed in solutions differing in concentration 1 when two different metals are immersed.
<h3>What is galvanic cell?</h3>
A galvanic cell is an electrochemical device that transforms chemically generated free energy into electrical energy. A photogalvanic cell produces photochemical species that react to produce an electrical current when connected to an external circuit.
<h3>How does galvanic cell works?</h3>
In order to create a pathway for the flow of electrons via this wire, the galvanic cell makes use of the ability to split the flow of electrons during the processes of oxidation and reduction, forcing a half-reaction and linking each with a wire.
An electrochemical device known as a galvanic cell converts chemical energy from a spontaneous redox response into electrical energy. It possesses an electrical potential of 1.1 V. The anode, which is a negative plate in galvanic cells, is where oxidation takes place. It is a positive plate where lessening takes place.
To learn more about galvanic cell visit:
brainly.com/question/13031093
#SPJ4
Answer:
47.2 g
Explanation:
Let's consider the following double displacement reaction.
3 FeCl₂ + 2 Na₃PO₄ → Fe₃(PO₄)₂ + 6 NaCl
The molar mass of Fe₃(PO₄)₂ is 357.48 g/mol. The moles corresponding to 44.3 g are:
44.3 g × (1 mol / 357.48 g) = 0.124 mol
The molar ratio of Fe₃(PO₄)₂ to FeCl₂ is 1:3. The moles of FeCl₂ are:
3 × 0.124 mol = 0.372 mol
The molar mass of FeCl₂ is 126.75 g/mol. The mass of FeCl₂ is:
0.372 mol × (126.75 g/mol) = 47.2 g
Answer:
Molality = 1.13 m
Explanation:
Molality is defined as the moles of the solute present in 1 kilogram of the solvent.
Given that:
Mass of
= 26.5 g
Molar mass of
= 32.04 g/mol
The formula for the calculation of moles is shown below:
Thus,

Mass of water = 735 g = 0.735 kg ( 1 g = 0.001 kg )
So, molality is:

<u>Molality = 1.13 m</u>