Answer:
[H₃O⁺] = [F⁻] = 2.2 x 10⁻² M. & [OH⁻] = 4.55 x 10⁻¹³.
Explanation:
- For a weak acid like HF, the dissociation of HF will be:
<em>HF + H₂O ⇄ H₃O⁺ + F⁻.</em>
[H₃O⁺] = [F⁻].
<em>∵ [H₃O⁺] = √Ka.C,</em>
Ka = 6.8 x 10⁻⁴, C = 0.710 M.
∴ [H₃O⁺] = √Ka.C = √(6.8 x 10⁻⁴)(0.710) = 2.197 x 10⁻² M ≅ 2.2 x 10⁻² M.
<em>∴ [H₃O⁺] = [F⁻] = 2.2 x 10⁻² M.</em>
<em></em>
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(2.2 x 10⁻²) = <em>4.55 x 10⁻¹³.</em>
Answer:
Both molarity and formality express concentration as moles of solute per liter of solution. Formality is a substance's total concentration in solution without regard to its specific chemical form. ... The formality of a solution is defined as the number of formula mass of any solute dissolved in 1 litre of solution.
It’s x200 plus 300 that’s why it is that answer
<u>Answer:</u>
70 kilometers per hour
<u>Explanation:</u>
280 kilometers ÷ 4 hours (7:00 pm - 3:00 pm = 4 hours) = 70 kilometers per hour
<em>Hope this helps! Sorry if wrong. You are loved and you are beautiful/handsome!</em>
-Bee
I assume you mean diato
mic elements.
Those are hydrogen, oxygen, nitrogen, fluorine, chlorine, bromine, and iodine. They all exist in the form

(

). Where they are all bonded to another one of themselves (a hydrogen atom binds to another hydrogen atom, a fluorine atom binds to another fluorine atom, etc.)