A compound is 2 or more substances chemically combined, mixtures arent
Answer:
HNO₃ (aq) —> H⁺ (aq) + NO₃¯ (aq)
Explanation:
From the question given above
HNO₃ + H₂O —> ?
Nitric acid, HNO₃ reacts with water, H₂O to form aqueous solution of nitric acid as illustrated below:
HNO₃ + H₂O —> HNO₃ (aq)
Nitric acid is a strong acid and, so will ionised completely when dissolved in water. This is illustrated below:
HNO₃ (aq) —> H⁺ (aq) + NO₃¯ (aq)
Answer:
Scientists seek to eliminate all forms of bias from their research. However, all scientists also make assumptions of a non-empirical nature about topics such as causality, determinism and reductionism when conducting research. Here, we argue that since these 'philosophical biases' cannot be avoided, they need to be debated critically by scientists and philosophers of science.
Explanation:
Scientists are keen to avoid bias of any kind because they threaten scientific ideals such as objectivity, transparency and rationality. The scientific community has made substantial efforts to detect, explicate and critically examine different types of biases (Sackett, 1979; Ioannidis, 2005; Ioannidis, 2018; Macleod et al., 2015). One example of this is the catalogue of all the biases that affect medical evidence compiled by the Centre for Evidence Based Medicine at Oxford University (catalogueofbias.org). Such awareness is commonly seen as a crucial step towards making science objective, transparent and free from bias.
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>