A pH of 2 indicates a acid
The relative molecular mass of the gas : 64 g/mol
<h3>Further explanation</h3>
Given
Helium rate = 4x an unknown gas
Required
The relative molecular mass of the gas
Solution
Graham's Law

r₁=4 x r₂
r₁ = Helium rate
r₂ = unknown gas rate
M₁= relative molecular mass of Helium = 4 g/mol
M₂ = relative molecular mass of the gas
Input the value :

Answer:
D)Gas particles move rapidly and have space between them.
Explanation:
Matter exists in three states namely: solids, liquids and gases. The particles contained in these three states are different from one another. In the gaseous state, the particles are FAR APART from one another i.e. space exists and they move at a very fast rate in contrast to the particles of a liquid, which have less space and move slower.
This rapid movement of gas particles within a less restricted space accounts for the reason why gaseous substances DIFFUSE more quickly than liquids.
(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.