Answer:
part A) The scale factor of the sides (small to large) is 1/2
part B) Te ratio of the areas (small to large) is 1/4
part C) see the explanation
Step-by-step explanation:
Part A) Determine the scale factor of the sides (small to large).
we know that
The dilation is a non rigid transformation that produce similar figures
If two figures are similar, then the ratio of its corresponding sides is proportional
so
Let
z ----> the scale factor

The scale factor is equal to

substitute

simplify

Part B) What is the ratio of the areas (small to large)?
<em>Area of the small triangle</em>

<em>Area of the large triangle</em>

ratio of the areas (small to large)

Part C) Write a generalization about the ratio of the sides and the ratio of the areas of similar figures
In similar figures the ratio of its corresponding sides is proportional and this ratio is called the scale factor
In similar figures the ratio of its areas is equal to the scale factor squared
This one is simple! Instead of y, swap it out with f(x) So, the answer is C, f(x)=2x+6
Answer:
DE = about 41.843 (rounded to nearest thousandth)
EF= 34.276 (rounded)
Step-by-step explanation:
For DE, we know that the shorter side (the opposite side) is 24, while the angle across form it is 35°. We can use trigonometry to figure this out. SinФ equals the opposite side (in this case, 24) divided by the hypotenuse. Set sinФ equal to a ratio of the sides like this:
sin(35) =
x represents the hypotenuse length, which we don't know; 35 is the angle measure. Next, isolate x so that the equation looks like this:
= x
You will need a calculator for the next part. (and make sure you're in degree mode!). evaluate sin(35) and divide 24 by that value. That is DE's length. DE = about 41.843 (rounded to nearest thousandth)
For EF, we can just use Pythagorean theorem now that we know the other sides' values.
EF^2 + 24^2 = DE^2
*a calculator might also be useful for this part.
EF= 34.276 (rounded)
Answer:
20%
Step-by-step explanation:
Multiply 12 by 2 then multiply your answer by 10. And the answer is the cost of the surfboard
All we need to do is 2400/700 = 3.43 (rounded) square ft. per person