Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:

where


.


Divide both sides by 1600:

Simplify:

Take the 6th root of both sides:
![\sqrt[6]{\frac{23}{16}}=1+r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D%3D1%2Br)
Subtract 1 on both sides:
![\sqrt[6]{\frac{23}{16}}-1=r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1%3Dr)
So the exact solution is ![r=\sqrt[6]{\frac{23}{16}}-1](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.
20.16 hopefully it’s right
Answer:
Option B.
Step-by-step explanation:
It is given that a delivery truck driver charges a fixed base price of $6 for 2 miles.
After 2 miles, he charges an additional $2 for every mile and after 6 miles, he charges an additional $4 for every mile.
We need to describe the cost of the delivery truck between 1 mile and 2 miles.
In the given graph x-axis represents the distance in miles and y-axis represents the cost in dollars.
From the given graph it is clear that the value of function is constant between x=1 and x=2.
It means the cost of the delivery truck between 1 mile and 2 miles is constant.
Therefore, the correct option is B.
So slope intercept form is y=mx+b m is the slope and b is the y intercept. The equation of this line would be y=1/4x+2 because the rise over run (slope) is 2/8 or 1/4 and the line intercepts the y axis at 2.
Step-by-step explanation:
If y was directly proportional to x, the graph of y against x would pass through the origin (O).
Since the graph above does not show this, y is not directly proportional to x.