Measurements of 30 I believe yw
1 and they split the other in half
Answer:
Third option.
Step-by-step explanation:
You need to cube both sides of the equation. Remember the Power of a power property:

![\sqrt[3]{162x^cy^5}=3x^2y(\sqrt[3]{6y^d})\\\\(\sqrt[3]{162x^cy^5})^3=(3x^2y(\sqrt[3]{6y^d}))^3\\\\162x^cy^5=27x^6y^36y^d](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%3D3x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%5C%5C%5C%5C%28%5Csqrt%5B3%5D%7B162x%5Ecy%5E5%7D%29%5E3%3D%283x%5E2y%28%5Csqrt%5B3%5D%7B6y%5Ed%7D%29%29%5E3%5C%5C%5C%5C162x%5Ecy%5E5%3D27x%5E6y%5E36y%5Ed)
According to the Product of powers property:

Then. simplifying you get:

Now you need to compare the exponents. You can observe that the exponent of "x" on the right side is 6, then the exponent of "x" on the left side must be 6. Therefore:

You can notice that the exponent of "y" on the left side is 5, then the exponent of "x" on the left side must be 5 too. Therefore "d" is:

An irrational number is a number that cannot be expressed in a fraction form while a rational number can.
an example of an irrational numbers are repeating numbers such as 0.77777... and examples of rational numbers are decimals such as 0.20, whole numbers such as 5, and fractions like 2/3
hope this helps a bit.
Answer:
A
Step-by-step explanation: