Answer:
c. It generates changes in the magnetic field of Earth.
Explanation:
please mark this answer as brainlest
The mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g. Details about mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles of a solution must be initially calculated by using the following formula:
molarity = no of moles ÷ volume
no of moles = 0.75 × 0.40
no of moles = 0.3 moles
mass of NaCl = 0.3 × 58.5 = 17.55g
Therefore, the mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g.
Learn more about mass at: brainly.com/question/19694949
#SPJ1
Greater rainfall has an greater increase on the rate of chemical weathering. Rain is a form of precipitation.
Answer:
On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group. As a result, the most electronegative elements are found on the top right of the periodic table, while the least electronegative elements are found on the bottom left.
Explanation:
Make sure to edit so you don't get copy-writed.
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml