Answer:
The location of the shear center o is 0.033 or 33 m
Explanation:
Solution
Recall that,
The moment of inertia of the section is = I = 0.05 * 0.4 ^3 /12 + 0.005 * 0.2 ^3/12
= 30 * 10 ^ ⁻⁶ m⁴
Now,
The first moment of inertia is
Q =ῩA = [ (0.1 -x) + x/2] (0.005 * x)
= 0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²
Thus,
The shear flow is,
q = VQ/I
so,
P = (0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²)/ 30 * 10 ^⁻⁶
P = (16.67 x - 83. 33 x²)
The shear force resisted by the shorter web becomes
Vw,₂ = 2∫ = ₀.₁ and ₀ = P (16.67 x - 83. 33 x²) dx = 0.11x
Then,
We take the moment at a point A
∑Mₐ = 0
- ( p * e)- (Vw₂ * 0.3 ) = 0
e = 0.11 p * 0.3/p
which gives us 0.033 m
= 33 m
Therefore the location of the shear center o is 0.033 or 33 m
Note: Kindly find an attached diagram to the question given above as part of the explanation solved with it.
The heat energy which has to be supplied to change the state of a substance is called its latent heat. Latent heat does not increase the kinetic energy of the particles of the substance, so the temperature of a substance does not rise during the change of state. :))
Answer:
41°
Explanation:
refractive index of glass, n = 1.52
For total internal reflection, the angle of refraction in rarer medium is 90°.
r = 90°
Let the angle of refraction in denser medium, that means in glass is i.
By use of Snell's law
refractive index of rarer medium with respect to denser medium, that means refractive index of air with respect to glass = 1 / n
And



i = 41°
Thus, the angle of incidence should be 41°.
Answer:
Linear momentum= Mass*Velocity
P=mv
P=60*10
P=600Kg m/s
It’s d energy because it’s referring to power changing because the power unit is (J/s) joule per second known as watt which is the same as implieing power