Answer:
(a) 1000 N/C
Explanation:
Kinetic energy of electron, K = 1.6 x 10^-17 J
distance, d = 10 cm = 0.1 m
Let the potential difference is V and the electric field is E.
(a) The relation between the kinetic energy and the potential difference is
K = e V
V = K / e
Where, e be the electronic charge = 1.6 x 10^-19 C
V = 
V = 100 V
The relation between the electric field and the potential difference is given by
V = E x d
100 = E x 0.1
E = 1000 N/C
(b) The force acting on the electron, F = q E
where q be the charge on electron
So, F = -e x E
It means the direction of electric field and the force are both opposite to each other.
The direction of electric field and the force on electron is shown in the diagram.
The three longest wavelengths for the standing waves on a 264-cm long string that is fixed at both ends are:
- 5.2 meters.
- 2.6 meters.
- 1.7meters.
Given data:
Length of the fixed string = 264cms = 2.64 meters
The wavelength for standing waves is given by:
λ = 2L/n
where,
- λ is the wavelength
- L is the length of the string
For n = 1,
= 5.2 meters
For n = 2,
= 2.6 meters
For n = 3,
= 1.7 meters
To learn more about standing waves: brainly.com/question/14151246
#SPJ4
"with the wind" is a tail-wind, and the speeds are added to get the groundspeed.
"against the wind" is a head-wind, and the windspeed is subtracted from the airspeed.
Answer:
Showing results for Two point charge q, separated by 1.5cm have change value of +2.0 and -4.0AND/C respectively what is the magnitude of the Electric force midway between them?
Search instead for Two point charge q, seperated by 1.5cm have change value of +2.0 and -4.0N/C respectively what is the magnitude of the Electric force midway between them?
Answer:
C
Explanation:
If a pulley system has an efficiency of 74.2%, then only that fraction of the work performed will be useful. 74.2%=0.742. 0.742*200 is about 148J. Hope this helps!