that's the answer I think
= 30802.53 im pretty sure if im wrong let me know its the best i can do :/
[A] 0
When opposing forces act on an object, this means that the object isn't moving at all. This is also known as a "balanced force." If the forces of the same and you add them together the answer is 0.
Hope This Helped! Good Luck!
Answer:
Changes in climate can result in impacts to local air quality. Atmospheric warming associated with climate change has the potential to increase ground-level ozone in many regions, which may present challenges for compliance with the ozone standards in the future.
Answer:
The energies of combustion (per gram) for hydrogen and methane are as follows: Methane = 82.5 kJ/g; Hydrogen = 162 kJ/g
<em>Note: The question is incomplete. The complete question is given below:</em>
To compare the energies of combustion of these fuels, the following experiment was carried out using a bomb calorimeter with a heat capacity of 11.3 kJ/℃. When a 1.00-g sample of methane gas burned with
<em>excess oxygen in the calorimeter, the temperature increased by 7.3℃. When a 1.00 g sample of hydrogen gas was burned with excess oxygen, the temperature increase was 14.3°C. Compare the energies of combustion (per gram) for hydrogen and methane.</em>
Explanation:
From the equation of the first law of thermodynamics, ΔU = Q + W
Since there is no expansion work in the bomb calorimeter, ΔU = Q
But Q = CΔT
where C is heat capacity of the bomb calorimeter = 11.3
kJ/ºC; ΔT = temperature change
For combustion of methane gas:
Q per gram = (
11.3
kJ/ºC * 7.3°C)/1.0g
Q = 83 kJ/g
For combustion of hydrogen gas:
Q per gram = (
11.3
kJ/ºC * 14.3°C)/1.0g
Q = 162 kJ/g