Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!
Answer:
A car stopped at the top of a hill
Explanation:
Potential energy is the energy that is stored in an object due to its position relative to some zero position.
therefore, the answer is the first option
=> A car stopped at the top of a hill
hope this helps and is right :)
Once the substance stops dissolving, the system is at equlibrium with the water and the undissolved salt now, if it is in the process of dissolving because it is completely soluble but has not been able to completely dissolve, it is not at equilibrium
<span>The first method to determine the chemical composition of a substance in space was using light. By determining red shift in the observed spectrum of light they could determine the elements they were observing. Different elements change the way light behaves and from this scientists can determine the makeup of things such as stars and nebulas.</span>
Answer:
Extreme pressure from burial, increasing temperature at depth, and a lot of time, can alter any rock type to form a metamorphic rock. If the newly formed metamorphic rock continues to heat, it can eventually melt and become molten (magma). When the molten rock cools it forms an igneous rock.