To solve this problem it is necessary to apply the concepts based on Newton's second law and the Centripetal Force.
That is to say,

Where,
Centripetal Force
Weight Force
Expanding the terms we have to,



Where,
r = Radius
g = Gravity
v = Velocity
Replacing with our values we have


Therefore the minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top is 10.75m/s
Luminosity is the total amount of power a star radiate I think :)
(b) 71%
The thermal efficiency of a Carnot heat engine is given by:

where
W is the useful work done by the engine
is the heat in input to the machine
In this problem, we have:
is the heat absorbed
is the work done (175 kJ is the heat released to the sink, therefore the work done is equal to the difference between the heat in input and the heat released)
So, the efficiency is

(a) 
The efficiency of an engine can also be rewritten as

where
is the absolute temperature of the cold sink
is the temperature of the source
In this problem, the temperature of the sink is

So we can re-arrange the equation to find the temperature of the source:

Answer:
Human senses include the ability to detect electromagnetic waves in the 3800-7600 angstrom range, air waves of 15 to 20,000 beats per second, air-borne and liquid-borne molecules of proper size, quantity and configuration, and to generate nerve impulses triggered by objects impinging on body surfaces with enough force
Answer:
I font now but I think its 2.0 + 78 w -60