Answer:

Explanation:
Given


Required
Determine the speed of B w.r.t A
The question implies that, we determine the relative velocity of B w.r.t A
Because both trains are moving towards one another, the required velocity is a
both trains:
This is shown below:



Answer:
Upper disk rotates at a constant angular velocity. The velocity at any height from stationery disk, say at x metres
where v is tangential velocity at radius r from the centre of disk
The radial component of velocity is given as
The z component of velocity is also given as
W=0
Total velocity,
The Atmosphere in Jupiter is full of gases that move at high speeds in giant eddies. Its atmosphere consists mostly of gases such as hydrogen that generate a temperature fluctuation of around 128K.
On Earth, due to the protection of the Ozone Layer and the presence of Nitrogen and Oxygen, the temperature fluctuates by an average of 300K.
In the case of Mars, its atmosphere is thin, mostly composed of Carbon Dioxide and Diatomic Nitrogen, which allow a temperature oscillation of 210K.
In contrast, the atmosphere of Venus is thick and is composed of carbon dioxide that does not allow the sun's rays to escape, generating an extreme 'greenhouse effect' with temperatures ranging from 737K,
Correct Answer is A.
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^