Answer:
108 student tickets, and 176 adult tickets were sold
Step-by-step explanation:
Adult ticket $8 Call the number of adult tickets sold "a"
Student ticket $5 Call the number of student tickets sold "s"
Since we are talking about TWO consecutive days of sold out seats, the total number of seats sold were 2* 142 = 284
Then we create two different equations with the information given:
a + s = 284
8 * a + 5 * s = 1948
we can solve for s in the first equation as follows: s = 284 - a
and use it in the second equation
8 a + 5 (284 - a) = 1948
8 a + 1420 - 5 a = 1948
combining
3 a = 528
a = 528/3
a = 176
we find the number of student tickets using this answer in the substitution equation we used:
s - 284 - 176 = 108
Therefore 108 student tickets, and 176 adult tickets were sold.
You would set it up: .5/100 = x/490 and then cross multiply .5 time 490 and 100 times x, and end up with: 245=100x. divide by 100, and get 2.45
Answer:
The number of trees at the begging of the 4-year period was 2560.
Step-by-step explanation:
Let’s say that x is number of trees at the begging of the first year, we know that for four years the number of trees were incised by 1/4 of the number of trees of the preceding year, so at the end of the first year the number of trees was
, and for the next three years we have that
Start End
Second year
-------------- 
Third year
-------------
Fourth year
--------------
So the formula to calculate the number of trees in the fourth year is
we know that all of the trees thrived and there were 6250 at the end of 4 year period, then
⇒
Therefore the number of trees at the begging of the 4-year period was 2560.
Answer: you could make a chart using guess and check